Skip to main content
Top
Published in: Neurotherapeutics 3/2023

Open Access 01-04-2023 | Epilepsy | Current Perspectives

Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases

Authors: Deepika Negi, Simon Granak, Susan Shorter, Valerie B. O’Leary, Ivan Rektor, Saak V. Ovsepian

Published in: Neurotherapeutics | Issue 3/2023

Login to get access

Abstract

In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer’s disease, Lewy body dementia, Parkinson’s disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Literature
2.
go back to reference Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48.PubMedCrossRef Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48.PubMedCrossRef
3.
go back to reference Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.PubMedCrossRef Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.PubMedCrossRef
4.
go back to reference G.B.D.D.F. Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019, Lancet. Public Health. 2022;7:e105–25. G.B.D.D.F. Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019, Lancet. Public Health. 2022;7:e105–25.
5.
go back to reference Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022;17:23.PubMedPubMedCentralCrossRef Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022;17:23.PubMedPubMedCentralCrossRef
6.
go back to reference Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jimenez D, Betts MJ, McGlinchey E, Berron D, O’Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Scholl M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther. 2020;12:49.PubMedPubMedCentralCrossRef Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jimenez D, Betts MJ, McGlinchey E, Berron D, O’Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Scholl M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther. 2020;12:49.PubMedPubMedCentralCrossRef
7.
go back to reference Ovsepian SV, Olefir I, Westmeyer G, Razansky D, Ntziachristos V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96:966–88.PubMedCrossRef Ovsepian SV, Olefir I, Westmeyer G, Razansky D, Ntziachristos V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96:966–88.PubMedCrossRef
8.
go back to reference Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage. 2019;187:209–25.PubMedCrossRef Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage. 2019;187:209–25.PubMedCrossRef
9.
go back to reference Hallett M, de Haan W, Deco G, Dengler R, Di Iorio R, Gallea C, Gerloff C, Grefkes C, Helmich RC, Kringelbach ML, Miraglia F, Rektor I, Strycek O, Vecchio F, Volz LJ, Wu T, Rossini PM. Human brain connectivity: clinical applications for clinical neurophysiology. Clin Neurophysiol. 2020;131:1621–51.PubMedCrossRef Hallett M, de Haan W, Deco G, Dengler R, Di Iorio R, Gallea C, Gerloff C, Grefkes C, Helmich RC, Kringelbach ML, Miraglia F, Rektor I, Strycek O, Vecchio F, Volz LJ, Wu T, Rossini PM. Human brain connectivity: clinical applications for clinical neurophysiology. Clin Neurophysiol. 2020;131:1621–51.PubMedCrossRef
10.
go back to reference Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A, Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, van der Flier W, Lotjonen J. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin. 2016;11:435–49.PubMedPubMedCentralCrossRef Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A, Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, van der Flier W, Lotjonen J. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin. 2016;11:435–49.PubMedPubMedCentralCrossRef
11.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.PubMedPubMedCentralCrossRef Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.PubMedPubMedCentralCrossRef
13.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.PubMedPubMedCentralCrossRef Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.PubMedPubMedCentralCrossRef
14.
go back to reference Whitwell JL, Jack CR Jr, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Ferman TJ, Dickson DW, Josephs KA. Rates of cerebral atrophy differ in different degenerative pathologies. Brain. 2007;130:1148–58.PubMedCrossRef Whitwell JL, Jack CR Jr, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Ferman TJ, Dickson DW, Josephs KA. Rates of cerebral atrophy differ in different degenerative pathologies. Brain. 2007;130:1148–58.PubMedCrossRef
16.
go back to reference Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, Dubois B, Escudero J, Fernandez A, Frisoni G, Guntekin B, Hajos M, Hampel H, Ifeachor E, Kilborn K, Kumar S, Johnsen K, Johannsson M, Jeong J, LeBeau F, Lizio R, Lopes da Silva F, Maestu F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Olichney J, Onofrj M, Palop JJ, Rowan M, Stocchi F, Struzik ZM, Tanila H, Teipel S, Taylor JP, Weiergraber M, Yener G, Young-Pearse T, Drinkenburg WH, Randall F. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58–73.PubMedCrossRef Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, Dubois B, Escudero J, Fernandez A, Frisoni G, Guntekin B, Hajos M, Hampel H, Ifeachor E, Kilborn K, Kumar S, Johnsen K, Johannsson M, Jeong J, LeBeau F, Lizio R, Lopes da Silva F, Maestu F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Olichney J, Onofrj M, Palop JJ, Rowan M, Stocchi F, Struzik ZM, Tanila H, Teipel S, Taylor JP, Weiergraber M, Yener G, Young-Pearse T, Drinkenburg WH, Randall F. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58–73.PubMedCrossRef
17.
go back to reference Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505.PubMedCrossRef Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505.PubMedCrossRef
18.
go back to reference McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: new approaches using signal analysis. J Neurol Neurosurg Psychiatry. 2019;90:1011–20.PubMedCrossRef McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: new approaches using signal analysis. J Neurol Neurosurg Psychiatry. 2019;90:1011–20.PubMedCrossRef
19.
go back to reference Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-art methods and emerging fluid biomarkers in the diagnostics of dementia—a short review and diagnostic algorithm. Diagnostics (Basel). 2021;11. Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-art methods and emerging fluid biomarkers in the diagnostics of dementia—a short review and diagnostic algorithm. Diagnostics (Basel). 2021;11.
20.
go back to reference Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16:10.PubMedPubMedCentralCrossRef Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16:10.PubMedPubMedCentralCrossRef
21.
go back to reference Simren J, Ashton NJ, Blennow K, Zetterberg H. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol. 2020;61:29–39.PubMedCrossRef Simren J, Ashton NJ, Blennow K, Zetterberg H. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol. 2020;61:29–39.PubMedCrossRef
22.
go back to reference Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics. 2022;12:3045–56.PubMedPubMedCentralCrossRef Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics. 2022;12:3045–56.PubMedPubMedCentralCrossRef
24.
go back to reference Barro C, Zetterberg H. The blood biomarkers puzzle—a review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods. 2021;361:109281.PubMedCrossRef Barro C, Zetterberg H. The blood biomarkers puzzle—a review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods. 2021;361:109281.PubMedCrossRef
26.
go back to reference Setoain X, Carreno M, Pavia J, Marti-Fuster B, Campos F, Lomena F. PET and SPECT in epilepsy. Rev Esp Med Nucl Imagen Mol. 2014;33:165–74.PubMed Setoain X, Carreno M, Pavia J, Marti-Fuster B, Campos F, Lomena F. PET and SPECT in epilepsy. Rev Esp Med Nucl Imagen Mol. 2014;33:165–74.PubMed
27.
go back to reference Galovic M, van Dooren VQH, Postma TS, Vos SB, Caciagli L, Borzi G, Cueva Rosillo J, Vuong KA, de Tisi J, Nachev P, Duncan JS, Koepp MJ. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 2019;76:1230–9.PubMedPubMedCentralCrossRef Galovic M, van Dooren VQH, Postma TS, Vos SB, Caciagli L, Borzi G, Cueva Rosillo J, Vuong KA, de Tisi J, Nachev P, Duncan JS, Koepp MJ. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 2019;76:1230–9.PubMedPubMedCentralCrossRef
28.
go back to reference Jardim AP, Duarte JTC, Lancellotti CLP, Carrete H Jr, Centeno RS, Scorza CA, Cavalheiro EA, Guaranha MSB, Yacubian EMT. Granule cell dispersion is associated with hippocampal neuronal cell loss, initial precipitating injury, and other clinical features in mesial temporal lobe epilepsy and hippocampal sclerosis. Seizure. 2021 Aug;90:60-66. https://doi.org/10.1016/j.seizure.2021.05.024. Epub 2021 May 31. PMID: 34162493. Jardim AP, Duarte JTC, Lancellotti CLP, Carrete H Jr, Centeno RS, Scorza CA, Cavalheiro EA, Guaranha MSB, Yacubian EMT. Granule cell dispersion is associated with hippocampal neuronal cell loss, initial precipitating injury, and other clinical features in mesial temporal lobe epilepsy and hippocampal sclerosis. Seizure. 2021 Aug;90:60-66. https://​doi.​org/​10.​1016/​j.​seizure.​2021.​05.​024. Epub 2021 May 31. PMID: 34162493.
29.
go back to reference Thom M, Koepp M. Tau protein in drug-resistant epilepsy and cognitive decline. In: Janigro D, Nehlig A, Marchi A (Eds.) Inflammation and Epilepsy: New Vistas. Progress in Inflammation Research, Springer; 2021. Thom M, Koepp M. Tau protein in drug-resistant epilepsy and cognitive decline. In: Janigro D, Nehlig A, Marchi A (Eds.) Inflammation and Epilepsy: New Vistas. Progress in Inflammation Research, Springer; 2021.
30.
go back to reference Obrocki P, Khatun A, Ness D, Senkevich K, Hanrieder J, Capraro F, Mattsson N, Andreasson U, Portelius E, Ashton NJ, Blennow K, Scholl M, Paterson RW, Schott JM, Zetterberg H. Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course—a joint PhD student course at University College London and University of Gothenburg. Alzheimers Res Ther. 2020;12:20.PubMedPubMedCentralCrossRef Obrocki P, Khatun A, Ness D, Senkevich K, Hanrieder J, Capraro F, Mattsson N, Andreasson U, Portelius E, Ashton NJ, Blennow K, Scholl M, Paterson RW, Schott JM, Zetterberg H. Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course—a joint PhD student course at University College London and University of Gothenburg. Alzheimers Res Ther. 2020;12:20.PubMedPubMedCentralCrossRef
31.
go back to reference Pitkanen A, Ndode-Ekane XE, Lapinlampi N, Puhakka N. Epilepsy biomarkers—toward etiology and pathology specificity. Neurobiol Dis. 2019;123:42–58.PubMedCrossRef Pitkanen A, Ndode-Ekane XE, Lapinlampi N, Puhakka N. Epilepsy biomarkers—toward etiology and pathology specificity. Neurobiol Dis. 2019;123:42–58.PubMedCrossRef
33.
go back to reference Hanin A, Lambrecq V, Denis JA, Imbert-Bismut F, Rucheton B, Lamari F, Bonnefont-Rousselot D, Demeret S, Navarro V. Cerebrospinal fluid and blood biomarkers of status epilepticus. Epilepsia. 2020;61:6–18.PubMedCrossRef Hanin A, Lambrecq V, Denis JA, Imbert-Bismut F, Rucheton B, Lamari F, Bonnefont-Rousselot D, Demeret S, Navarro V. Cerebrospinal fluid and blood biomarkers of status epilepticus. Epilepsia. 2020;61:6–18.PubMedCrossRef
34.
go back to reference Li Z, Cao W, Sun H, Wang X, Li S, Ran X, Zhang H. Potential clinical and biochemical markers for the prediction of drug-resistant epilepsy: a literature review. Neurobiol Dis. 2022;174:105872.PubMedCrossRef Li Z, Cao W, Sun H, Wang X, Li S, Ran X, Zhang H. Potential clinical and biochemical markers for the prediction of drug-resistant epilepsy: a literature review. Neurobiol Dis. 2022;174:105872.PubMedCrossRef
35.
go back to reference Zaitsev AV, Smolensky IV, Jorratt P, Ovsepian SV. Neurobiology, functions, and relevance of excitatory amino acid transporters (EAATs) to treatment of refractory epilepsy. CNS Drugs. 2020;34:1089–103.PubMedCrossRef Zaitsev AV, Smolensky IV, Jorratt P, Ovsepian SV. Neurobiology, functions, and relevance of excitatory amino acid transporters (EAATs) to treatment of refractory epilepsy. CNS Drugs. 2020;34:1089–103.PubMedCrossRef
36.
go back to reference Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O’Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018;136:821–53.PubMedPubMedCentralCrossRef Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O’Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018;136:821–53.PubMedPubMedCentralCrossRef
37.
go back to reference Zou K, Abdullah M, Michikawa M. Current biomarkers for Alzheimer's disease: from CSF to blood. J Pers Med. 2020;10. Zou K, Abdullah M, Michikawa M. Current biomarkers for Alzheimer's disease: from CSF to blood. J Pers Med. 2020;10.
38.
go back to reference Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, Hansson O. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:26801.PubMedPubMedCentralCrossRef Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, Hansson O. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:26801.PubMedPubMedCentralCrossRef
39.
go back to reference Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V, Caillet-Boudin ML, Pasquier F, Maurage CA, Sablonniere B, Vanmechelen E, Buee L. Tau as a biomarker of neurodegenerative diseases. Biomark Med. 2008;2:363–84.PubMedCrossRef Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V, Caillet-Boudin ML, Pasquier F, Maurage CA, Sablonniere B, Vanmechelen E, Buee L. Tau as a biomarker of neurodegenerative diseases. Biomark Med. 2008;2:363–84.PubMedCrossRef
40.
go back to reference Sergeant N, Delacourte A, Buee L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta. 2005;1739:179–97.PubMedCrossRef Sergeant N, Delacourte A, Buee L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta. 2005;1739:179–97.PubMedCrossRef
41.
go back to reference Stomrud E, Hansson O, Zetterberg H, Blennow K, Minthon L, Londos E. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol. 2010;67:217–23.PubMedCrossRef Stomrud E, Hansson O, Zetterberg H, Blennow K, Minthon L, Londos E. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol. 2010;67:217–23.PubMedCrossRef
42.
go back to reference Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, Morris JC, McKeel DW Jr, Farlow M, Weitlauf SL, Quinn J, Kaye J, Knopman D, Arai H, Doody RS, DeCarli C, Leight S, Lee VM, Trojanowski JQ. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. 2003;60:1696–702.PubMedCrossRef Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, Morris JC, McKeel DW Jr, Farlow M, Weitlauf SL, Quinn J, Kaye J, Knopman D, Arai H, Doody RS, DeCarli C, Leight S, Lee VM, Trojanowski JQ. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. 2003;60:1696–702.PubMedCrossRef
43.
go back to reference Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, Chamoun M, Savard M, Kang MS, Therriault J, Scholl M, Massarweh G, Soucy JP, Hoglund K, Brinkmalm G, Mattsson N, Palmqvist S, Gauthier S, Stomrud E, Zetterberg H, Hansson O, Rosa-Neto P, Blennow K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.PubMedCrossRef Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, Chamoun M, Savard M, Kang MS, Therriault J, Scholl M, Massarweh G, Soucy JP, Hoglund K, Brinkmalm G, Mattsson N, Palmqvist S, Gauthier S, Stomrud E, Zetterberg H, Hansson O, Rosa-Neto P, Blennow K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.PubMedCrossRef
44.
go back to reference Magalhaes P, Lashuel HA. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. NPJ Parkinsons Dis. 2022;8:93.PubMedPubMedCentralCrossRef Magalhaes P, Lashuel HA. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. NPJ Parkinsons Dis. 2022;8:93.PubMedPubMedCentralCrossRef
45.
go back to reference Chang CW, Yang SY, Yang CC, Chang CW, Wu YR. Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with Parkinson’s disease. Front Neurol. 2019;10:1388.PubMedCrossRef Chang CW, Yang SY, Yang CC, Chang CW, Wu YR. Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with Parkinson’s disease. Front Neurol. 2019;10:1388.PubMedCrossRef
46.
go back to reference Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, Turner MR. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol. 2015;2:748–55.PubMedPubMedCentralCrossRef Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, Turner MR. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol. 2015;2:748–55.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90:870–81.PubMedCrossRef Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90:870–81.PubMedCrossRef
49.
go back to reference Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother. 2017;17:47–57.PubMedCrossRef Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother. 2017;17:47–57.PubMedCrossRef
50.
go back to reference Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I, Teipel SJ, Cavedo E, Dos Santos AM, Epelbaum S, Lamari F, Dubois B, Nistico R, Floris R, Garaci F, Hampel H, Alzheimer Precision Medicine Initiative. Cerebrospinal fluid neurogranin as a biomarker of neurodegenerative diseases: a cross-sectional study. J Alzheimers Dis. 2017;59:1327–34.PubMedCrossRef Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I, Teipel SJ, Cavedo E, Dos Santos AM, Epelbaum S, Lamari F, Dubois B, Nistico R, Floris R, Garaci F, Hampel H, Alzheimer Precision Medicine Initiative. Cerebrospinal fluid neurogranin as a biomarker of neurodegenerative diseases: a cross-sectional study. J Alzheimers Dis. 2017;59:1327–34.PubMedCrossRef
52.
go back to reference Neri S, Mastroianni G, Gardella E, Aguglia U, Rubboli G. Epilepsy in neurodegenerative diseases. Epileptic Disord. 2022;24:249–73.PubMedCrossRef Neri S, Mastroianni G, Gardella E, Aguglia U, Rubboli G. Epilepsy in neurodegenerative diseases. Epileptic Disord. 2022;24:249–73.PubMedCrossRef
53.
go back to reference Xu Y, Lavrencic L, Radford K, Booth A, Yoshimura S, Anstey KJ, Anderson CS, Peters R. Systematic review of coexistent epileptic seizures and Alzheimer’s disease: Incidence and prevalence. J Am Geriatr Soc. 2021;69:2011–20.PubMedCrossRef Xu Y, Lavrencic L, Radford K, Booth A, Yoshimura S, Anstey KJ, Anderson CS, Peters R. Systematic review of coexistent epileptic seizures and Alzheimer’s disease: Incidence and prevalence. J Am Geriatr Soc. 2021;69:2011–20.PubMedCrossRef
54.
go back to reference Voglein J, Kostova I, Arzberger T, Noachtar S, Dieterich M, Herms J, Schmitz P, Ruf V, Windl O, Roeber S, Simons M, Hoglinger GU, Danek A, Giese A, Levin J. Seizure prevalence in neurodegenerative diseases-a study of autopsy proven cases. Eur J Neurol. 2022;29:12–8.PubMedCrossRef Voglein J, Kostova I, Arzberger T, Noachtar S, Dieterich M, Herms J, Schmitz P, Ruf V, Windl O, Roeber S, Simons M, Hoglinger GU, Danek A, Giese A, Levin J. Seizure prevalence in neurodegenerative diseases-a study of autopsy proven cases. Eur J Neurol. 2022;29:12–8.PubMedCrossRef
55.
go back to reference Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16:311–22.PubMedPubMedCentralCrossRef Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16:311–22.PubMedPubMedCentralCrossRef
56.
go back to reference Ovsepian SV, O’Leary VB. Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis. 2016;49:13–9.PubMedCrossRef Ovsepian SV, O’Leary VB. Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis. 2016;49:13–9.PubMedCrossRef
57.
go back to reference Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, Laferla FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3xTg-AD mice. PLoS ONE. 2012;7:e48782.PubMedPubMedCentralCrossRef Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, Laferla FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3xTg-AD mice. PLoS ONE. 2012;7:e48782.PubMedPubMedCentralCrossRef
58.
go back to reference Tombini M, Assenza G, Ricci L, Lanzone J, Boscarino M, Vico C, Magliozzi A, Di Lazzaro V. Temporal lobe epilepsy and Alzheimer’s disease: from preclinical to clinical evidence of a strong association. J Alzheimers Dis Rep. 2021;5:243–61.PubMedPubMedCentralCrossRef Tombini M, Assenza G, Ricci L, Lanzone J, Boscarino M, Vico C, Magliozzi A, Di Lazzaro V. Temporal lobe epilepsy and Alzheimer’s disease: from preclinical to clinical evidence of a strong association. J Alzheimers Dis Rep. 2021;5:243–61.PubMedPubMedCentralCrossRef
59.
go back to reference Buda O, Arsene D, Ceausu M, Dermengiu D, Curca GC. Georges Marinesco and the early research in neuropathology. Neurology. 2009;72:88–91.PubMedCrossRef Buda O, Arsene D, Ceausu M, Dermengiu D, Curca GC. Georges Marinesco and the early research in neuropathology. Neurology. 2009;72:88–91.PubMedCrossRef
60.
go back to reference Mackenzie IR, Miller LA. Senile plaques in temporal lobe epilepsy. Acta Neuropathol. 1994;87:504–10.PubMedCrossRef Mackenzie IR, Miller LA. Senile plaques in temporal lobe epilepsy. Acta Neuropathol. 1994;87:504–10.PubMedCrossRef
61.
go back to reference Mackenzie IR, McLachlan RS, Kubu CS, Miller LA. Prospective neuropsychological assessment of nondemented patients with biopsy proven senile plaques. Neurology. 1996;46:425–9.PubMedCrossRef Mackenzie IR, McLachlan RS, Kubu CS, Miller LA. Prospective neuropsychological assessment of nondemented patients with biopsy proven senile plaques. Neurology. 1996;46:425–9.PubMedCrossRef
62.
go back to reference Shahim P, Rejdak R, Ksiazek P, Blennow K, Zetterberg H, Mattsson N, Rejdak K. Cerebrospinal fluid biomarkers of beta-amyloid metabolism and neuronal damage in epileptic seizures. Eur J Neurol. 2014;21:486–91.PubMedCrossRef Shahim P, Rejdak R, Ksiazek P, Blennow K, Zetterberg H, Mattsson N, Rejdak K. Cerebrospinal fluid biomarkers of beta-amyloid metabolism and neuronal damage in epileptic seizures. Eur J Neurol. 2014;21:486–91.PubMedCrossRef
63.
go back to reference Banote RK, Håkansson S, Zetterberg H, Zelano J. CSF biomarkers in patients with epilepsy in Alzheimer’s disease: a nation-wide study. Brain Commun. 2022;4(4). Banote RK, Håkansson S, Zetterberg H, Zelano J. CSF biomarkers in patients with epilepsy in Alzheimer’s disease: a nation-wide study. Brain Commun. 2022;4(4).
64.
go back to reference Cretin B, Bousiges O, Hautecloque G, Philippi N, Blanc F, Dibitonto L, Martin-Hunyadi C, Sellal F. CSF in epileptic prodromal Alzheimer’s Disease: no diagnostic contribution but a pathophysiological one. Front Neurol. 2021;12:623777.PubMedPubMedCentralCrossRef Cretin B, Bousiges O, Hautecloque G, Philippi N, Blanc F, Dibitonto L, Martin-Hunyadi C, Sellal F. CSF in epileptic prodromal Alzheimer’s Disease: no diagnostic contribution but a pathophysiological one. Front Neurol. 2021;12:623777.PubMedPubMedCentralCrossRef
65.
go back to reference Palmio J, Suhonen J, Keranen T, Hulkkonen J, Peltola J, Pirttila T. Cerebrospinal fluid tau as a marker of neuronal damage after epileptic seizure. Seizure. 2009;18:474–7.PubMedCrossRef Palmio J, Suhonen J, Keranen T, Hulkkonen J, Peltola J, Pirttila T. Cerebrospinal fluid tau as a marker of neuronal damage after epileptic seizure. Seizure. 2009;18:474–7.PubMedCrossRef
66.
go back to reference Nass RD, Akgun K, Elger C, Reichmann H, Wagner M, Surges R, Ziemssen T. Serum biomarkers of cerebral cellular stress after self-limiting tonic clonic seizures: an exploratory study. Seizure. 2021;85:1–5.PubMedCrossRef Nass RD, Akgun K, Elger C, Reichmann H, Wagner M, Surges R, Ziemssen T. Serum biomarkers of cerebral cellular stress after self-limiting tonic clonic seizures: an exploratory study. Seizure. 2021;85:1–5.PubMedCrossRef
67.
go back to reference Costa C, Romoli M, Liguori C, Farotti L, Eusebi P, Bedetti C, Siliquini S, Cesarini EN, Romigi A, Mercuri NB, Parnetti L, Calabresi P. Alzheimer’s disease and late-onset epilepsy of unknown origin: two faces of beta amyloid pathology. Neurobiol Aging. 2019;73:61–7.PubMedCrossRef Costa C, Romoli M, Liguori C, Farotti L, Eusebi P, Bedetti C, Siliquini S, Cesarini EN, Romigi A, Mercuri NB, Parnetti L, Calabresi P. Alzheimer’s disease and late-onset epilepsy of unknown origin: two faces of beta amyloid pathology. Neurobiol Aging. 2019;73:61–7.PubMedCrossRef
68.
go back to reference Monti G, Tondelli M, Giovannini G, Bedin R, Nichelli PF, Trenti T, Meletti S, Chiari A. Cerebrospinal fluid tau proteins in status epilepticus. Epilepsy Behav. 2015;49:150–4.PubMedCrossRef Monti G, Tondelli M, Giovannini G, Bedin R, Nichelli PF, Trenti T, Meletti S, Chiari A. Cerebrospinal fluid tau proteins in status epilepticus. Epilepsy Behav. 2015;49:150–4.PubMedCrossRef
69.
go back to reference Tabuas-Pereira M, Duraes J, Lopes J, Sales F, Bento C, Duro D, Santiago B, Almeida MR, Leitao MJ, Baldeiras I, Santana I. Increased CSF tau is associated with a higher risk of seizures in patients with Alzheimer’s disease. Epilepsy Behav. 2019;98:207–9.PubMedCrossRef Tabuas-Pereira M, Duraes J, Lopes J, Sales F, Bento C, Duro D, Santiago B, Almeida MR, Leitao MJ, Baldeiras I, Santana I. Increased CSF tau is associated with a higher risk of seizures in patients with Alzheimer’s disease. Epilepsy Behav. 2019;98:207–9.PubMedCrossRef
70.
go back to reference Eriksson H, Lowhagen Henden P, Rentzos A, Pujol-Calderon F, Karlsson JE, Hoglund K, Blennow K, Zetterberg H, Rosengren L, Zelano J. Acute symptomatic seizures and epilepsy after mechanical thrombectomy. Epilepsy Behav. 2020;104:106520.PubMedCrossRef Eriksson H, Lowhagen Henden P, Rentzos A, Pujol-Calderon F, Karlsson JE, Hoglund K, Blennow K, Zetterberg H, Rosengren L, Zelano J. Acute symptomatic seizures and epilepsy after mechanical thrombectomy. Epilepsy Behav. 2020;104:106520.PubMedCrossRef
71.
go back to reference Nass RD, Akgun K, Dague KO, Elger CE, Reichmann H, Ziemssen T, Surges R. CSF and serum biomarkers of cerebral damage in autoimmune epilepsy. Front Neurol. 2021;12:647428.PubMedPubMedCentralCrossRef Nass RD, Akgun K, Dague KO, Elger CE, Reichmann H, Ziemssen T, Surges R. CSF and serum biomarkers of cerebral damage in autoimmune epilepsy. Front Neurol. 2021;12:647428.PubMedPubMedCentralCrossRef
72.
go back to reference Shahim P, Darin N, Andreasson U, Blennow K, Jennions E, Lundgren J, Mansson JE, Naess K, Tornhage CJ, Zetterberg H, Mattsson N. Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr Neurol. 2013;49:31–9 e32.PubMedCrossRef Shahim P, Darin N, Andreasson U, Blennow K, Jennions E, Lundgren J, Mansson JE, Naess K, Tornhage CJ, Zetterberg H, Mattsson N. Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr Neurol. 2013;49:31–9 e32.PubMedCrossRef
73.
go back to reference Mo L, Ding X, Tan C, Liu X, Wei X, Wang H, Zhou W, Chen L. Association of cerebrospinal fluid zinc-alpha2-glycoprotein and tau protein with temporal lobe epilepsy and related white matter impairment. NeuroReport. 2019;30:586–91.PubMedCrossRef Mo L, Ding X, Tan C, Liu X, Wei X, Wang H, Zhou W, Chen L. Association of cerebrospinal fluid zinc-alpha2-glycoprotein and tau protein with temporal lobe epilepsy and related white matter impairment. NeuroReport. 2019;30:586–91.PubMedCrossRef
74.
go back to reference Eriksson H, Banote RK, Larsson D, Blennow K, Zetterberg H, Zelano J. Brain injury markers in new-onset seizures in adults: A pilot study. Seizure. 2021;92:62–7.PubMedCrossRef Eriksson H, Banote RK, Larsson D, Blennow K, Zetterberg H, Zelano J. Brain injury markers in new-onset seizures in adults: A pilot study. Seizure. 2021;92:62–7.PubMedCrossRef
75.
go back to reference Giovannini G, Bedin R, Ferraro D, Vaudano AE, Mandrioli J, Meletti S. Serum neurofilament light as biomarker of seizure-related neuronal injury in status epilepticus. Epilepsia. 2022;63:e23–9.PubMedCrossRef Giovannini G, Bedin R, Ferraro D, Vaudano AE, Mandrioli J, Meletti S. Serum neurofilament light as biomarker of seizure-related neuronal injury in status epilepticus. Epilepsia. 2022;63:e23–9.PubMedCrossRef
76.
go back to reference Ouedraogo O, Rebillard RM, Jamann H, Mamane VH, Clenet ML, Daigneault A, Lahav B, Uphaus T, Steffen F, Bittner S, Zipp F, Berube A, Lapalme-Remis S, Cossette P, Nguyen DK, Arbour N, Keezer MR, Larochelle C. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia. 2021;62:176–89.PubMedCrossRef Ouedraogo O, Rebillard RM, Jamann H, Mamane VH, Clenet ML, Daigneault A, Lahav B, Uphaus T, Steffen F, Bittner S, Zipp F, Berube A, Lapalme-Remis S, Cossette P, Nguyen DK, Arbour N, Keezer MR, Larochelle C. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia. 2021;62:176–89.PubMedCrossRef
77.
go back to reference Lardeux P, Fourier A, Peter E, Dorey A, Muniz-Castrillo S, Vogrig A, Picard G, Rogemond V, Verdurand M, Formaglio M, Joubert B, Froment Tilikete C, Honnorat J, Quadrio I, Desestret V. Core cerebrospinal fluid biomarker profile in anti-LGI1 encephalitis. J Neurol. 2022;269:377–88.PubMedCrossRef Lardeux P, Fourier A, Peter E, Dorey A, Muniz-Castrillo S, Vogrig A, Picard G, Rogemond V, Verdurand M, Formaglio M, Joubert B, Froment Tilikete C, Honnorat J, Quadrio I, Desestret V. Core cerebrospinal fluid biomarker profile in anti-LGI1 encephalitis. J Neurol. 2022;269:377–88.PubMedCrossRef
78.
go back to reference Evers KS, Hugli M, Fouzas S, Kasser S, Pohl C, Stoecklin B, Bernasconi L, Kuhle J, Wellmann S. Serum Neurofilament Levels in Children With Febrile Seizures and in Controls. Front Neurosci. 2020;14:579958.PubMedPubMedCentralCrossRef Evers KS, Hugli M, Fouzas S, Kasser S, Pohl C, Stoecklin B, Bernasconi L, Kuhle J, Wellmann S. Serum Neurofilament Levels in Children With Febrile Seizures and in Controls. Front Neurosci. 2020;14:579958.PubMedPubMedCentralCrossRef
79.
go back to reference Matsushige T, Inoue H, Fukunaga S, Hasegawa S, Okuda M, Ichiyama T. Serum neurofilament concentrations in children with prolonged febrile seizures. J Neurol Sci. 2012;321:39–42.PubMedCrossRef Matsushige T, Inoue H, Fukunaga S, Hasegawa S, Okuda M, Ichiyama T. Serum neurofilament concentrations in children with prolonged febrile seizures. J Neurol Sci. 2012;321:39–42.PubMedCrossRef
81.
go back to reference Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000;97:11232–7.PubMedPubMedCentralCrossRef Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000;97:11232–7.PubMedPubMedCentralCrossRef
82.
go back to reference Kalkan A, Demirel A, Atis SE, Karaaslan EB, Ferhatlar ME, Senturk M. A new biomarker in the differential diagnosis of epileptic seizure: Neurogranin. Am J Emerg Med. 2022;54:147–50.PubMedCrossRef Kalkan A, Demirel A, Atis SE, Karaaslan EB, Ferhatlar ME, Senturk M. A new biomarker in the differential diagnosis of epileptic seizure: Neurogranin. Am J Emerg Med. 2022;54:147–50.PubMedCrossRef
83.
go back to reference Rong H, Jin L, Wei W, Wang X, Xi Z. Alpha-synuclein is a potential biomarker in the serum and CSF of patients with intractable epilepsy. Seizure. 2015;27:6–9.PubMedCrossRef Rong H, Jin L, Wei W, Wang X, Xi Z. Alpha-synuclein is a potential biomarker in the serum and CSF of patients with intractable epilepsy. Seizure. 2015;27:6–9.PubMedCrossRef
84.
go back to reference Choi J, Kim SY, Kim H, Lim BC, Hwang H, Chae JH, Kim KJ, Oh S, Kim EY, Shin JS. Serum alpha-synuclein and IL-1beta are increased and correlated with measures of disease severity in children with epilepsy: potential prognostic biomarkers? BMC Neurol. 2020;20:85.PubMedPubMedCentralCrossRef Choi J, Kim SY, Kim H, Lim BC, Hwang H, Chae JH, Kim KJ, Oh S, Kim EY, Shin JS. Serum alpha-synuclein and IL-1beta are increased and correlated with measures of disease severity in children with epilepsy: potential prognostic biomarkers? BMC Neurol. 2020;20:85.PubMedPubMedCentralCrossRef
85.
go back to reference Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. Effects of metformin on apoptosis and alpha-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol. 2019;97:37–46.PubMedCrossRef Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. Effects of metformin on apoptosis and alpha-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol. 2019;97:37–46.PubMedCrossRef
86.
go back to reference Gafson AR, Barthelemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143:1975–98.PubMedPubMedCentralCrossRef Gafson AR, Barthelemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143:1975–98.PubMedPubMedCentralCrossRef
88.
go back to reference Rossini L, Garbelli R, Gnatkovsky V, Didato G, Villani F, Spreafico R, Deleo F, Lo Russo G, Tringali G, Gozzo F, Tassi L, de Curtis M. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy. Ann Neurol. 2017;82:331–41.PubMedCrossRef Rossini L, Garbelli R, Gnatkovsky V, Didato G, Villani F, Spreafico R, Deleo F, Lo Russo G, Tringali G, Gozzo F, Tassi L, de Curtis M. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy. Ann Neurol. 2017;82:331–41.PubMedCrossRef
89.
go back to reference Thom M, Zhou J, Martinian L, Sisodiya S. Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain. 2005;128:1344–57.PubMedCrossRef Thom M, Zhou J, Martinian L, Sisodiya S. Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain. 2005;128:1344–57.PubMedCrossRef
90.
go back to reference Gorter JA, Goncalves Pereira PM, van Vliet EA, Aronica E, Lopes da Silva FH, Lucassen PJ. Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia. 2003;44:647–58.PubMedCrossRef Gorter JA, Goncalves Pereira PM, van Vliet EA, Aronica E, Lopes da Silva FH, Lucassen PJ. Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia. 2003;44:647–58.PubMedCrossRef
91.
go back to reference Bertram EH 3rd, Lothman EW. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat. Brain Res. 1993;603:25–31.PubMedCrossRef Bertram EH 3rd, Lothman EW. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat. Brain Res. 1993;603:25–31.PubMedCrossRef
92.
go back to reference Mathern GW, Bertram EH III. Recurrent limbic seizures do not cause hippocampal neuronal loss: A prolonged laboratory study. Neurobiol Dis. 2021;148:105183.PubMedCrossRef Mathern GW, Bertram EH III. Recurrent limbic seizures do not cause hippocampal neuronal loss: A prolonged laboratory study. Neurobiol Dis. 2021;148:105183.PubMedCrossRef
94.
go back to reference Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29:4981–92.PubMedPubMedCentralCrossRef Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29:4981–92.PubMedPubMedCentralCrossRef
96.
go back to reference Kleijmeer M, Ramm G, Schuurhuis D, Griffith J, Rescigno M, Ricciardi-Castagnoli P, Rudensky AY, Ossendorp F, Melief CJ, Stoorvogel W, Geuze HJ. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J Cell Biol. 2001;155:53–63.PubMedPubMedCentralCrossRef Kleijmeer M, Ramm G, Schuurhuis D, Griffith J, Rescigno M, Ricciardi-Castagnoli P, Rudensky AY, Ossendorp F, Melief CJ, Stoorvogel W, Geuze HJ. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J Cell Biol. 2001;155:53–63.PubMedPubMedCentralCrossRef
97.
go back to reference Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol. 2011;93:313–40.CrossRef Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol. 2011;93:313–40.CrossRef
98.
99.
go back to reference Fassio A, Falace A, Esposito A, Aprile D, Guerrini R, Benfenati F. Emerging role of the autophagy/lysosomal degradative pathway in neurodevelopmental disorders with epilepsy. Front Cell Neurosci. 2020;14:39.PubMedPubMedCentralCrossRef Fassio A, Falace A, Esposito A, Aprile D, Guerrini R, Benfenati F. Emerging role of the autophagy/lysosomal degradative pathway in neurodevelopmental disorders with epilepsy. Front Cell Neurosci. 2020;14:39.PubMedPubMedCentralCrossRef
100.
go back to reference Sproviero D, La Salvia S, Giannini M, Crippa V, Gagliardi S, Bernuzzi S, Diamanti L, Ceroni M, Pansarasa O, Poletti A, Cereda C. Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front Neurosci. 2018;12:487.PubMedPubMedCentralCrossRef Sproviero D, La Salvia S, Giannini M, Crippa V, Gagliardi S, Bernuzzi S, Diamanti L, Ceroni M, Pansarasa O, Poletti A, Cereda C. Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front Neurosci. 2018;12:487.PubMedPubMedCentralCrossRef
101.
go back to reference Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8:220–32.PubMedCrossRef Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8:220–32.PubMedCrossRef
102.
go back to reference Upadhya D, Shetty AK. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav. 2021;121:106499.PubMedCrossRef Upadhya D, Shetty AK. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav. 2021;121:106499.PubMedCrossRef
103.
go back to reference Ludwig M, Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci. 2006;7:126–36.PubMedCrossRef Ludwig M, Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci. 2006;7:126–36.PubMedCrossRef
104.
go back to reference Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna). 2015;122:849–62.PubMedCrossRef Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna). 2015;122:849–62.PubMedCrossRef
105.
go back to reference Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.PubMedPubMedCentralCrossRef Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.PubMedPubMedCentralCrossRef
106.
go back to reference Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984;246:F835-844.PubMed Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984;246:F835-844.PubMed
107.
go back to reference Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33:89–96.PubMedCrossRef Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33:89–96.PubMedCrossRef
108.
go back to reference Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018;136:139–52.PubMedPubMedCentralCrossRef Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018;136:139–52.PubMedPubMedCentralCrossRef
109.
go back to reference Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44.PubMedCrossRef Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44.PubMedCrossRef
110.
go back to reference Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011;121:431–43.PubMedCrossRef Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011;121:431–43.PubMedCrossRef
111.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.PubMedPubMedCentralCrossRef Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.PubMedPubMedCentralCrossRef
112.
go back to reference Ovsepian SV, Horacek J, O’Leary VB, Hoschl C. The ups and downs of BACE1: walking a fine line between neurocognitive and other psychiatric symptoms of Alzheimer’s disease. Neuroscientist. 2021;27:222–34.PubMedCrossRef Ovsepian SV, Horacek J, O’Leary VB, Hoschl C. The ups and downs of BACE1: walking a fine line between neurocognitive and other psychiatric symptoms of Alzheimer’s disease. Neuroscientist. 2021;27:222–34.PubMedCrossRef
113.
go back to reference Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist. 2016;22:238–51.PubMedCrossRef Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist. 2016;22:238–51.PubMedCrossRef
114.
go back to reference Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid plaques of Alzheimer’s disease as hotspots of glutamatergic activity. Neuroscientist. 2019;25:288–97.PubMedCrossRef Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid plaques of Alzheimer’s disease as hotspots of glutamatergic activity. Neuroscientist. 2019;25:288–97.PubMedCrossRef
115.
go back to reference Ovsepian SV, Blazquez-Llorca L, Freitag SV, Rodrigues EF, Herms J. Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors. Cereb Cortex. 2017;27:4733–49.PubMed Ovsepian SV, Blazquez-Llorca L, Freitag SV, Rodrigues EF, Herms J. Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors. Cereb Cortex. 2017;27:4733–49.PubMed
Metadata
Title
Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases
Authors
Deepika Negi
Simon Granak
Susan Shorter
Valerie B. O’Leary
Ivan Rektor
Saak V. Ovsepian
Publication date
01-04-2023
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 3/2023
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-023-01355-7

Other articles of this Issue 3/2023

Neurotherapeutics 3/2023 Go to the issue