Skip to main content
Top
Published in: Acta Epileptologica 1/2024

Open Access 01-12-2024 | Epilepsy | Research

Autophagy-related genes in mesial temporal lobe epilepsy: an integrated bioinformatics analysis

Authors: Man Yang, Yinchao Li, Xianyue Liu, Shangnan Zou, Lei Lei, Qihang Zou, Yaqian Zhang, Yubao Fang, Shuda Chen, Liemin Zhou

Published in: Acta Epileptologica | Issue 1/2024

Login to get access

Abstract

Background

Autophagy plays essential roles in the development and pathogenesis of mesial temporal lobe epilepsy (mTLE). In this research, we aim to identify and validate the autophagy-related genes associated with mTLE through bioinformatics analysis and experimental validations.

Methods

We obtained the dataset GSE143272 and high-throughput sequencing results of mTLE from public databases. Potential differentially expressed autophagy-related genes related to mTLE were identified using R software. Subsequently, genomes pathway enrichment analysis, protein-protein interactions (PPIs), and the gene ontology (GO) enrichment were performed for the selected autophagy-related genes. The mRNA expression profiles of hub genes were then used to establish a least absolute shrinkage and selection operator (LASSO) model. Finally, seven hub candidate autophagy-related genes were confirmed in hippocampus using the lithium-pilocarpine chronic epilepsy model.

Results

A total of 40 differential expression genes (DEGs) among the core autophagy-related genes were identified. The analysis results of PPI revealed that interactions among these DEGs. KEGG pathway and GO analysis of selected candidate autophagy-related genes indicated that those enriched terms mainly focused on macroautophagy, regulation of autophagy, cellular response to extracellular stimulus and mitochondrion disassembly. The results suggested that SQSTM1, VEGFA, BNIP and WIPI2 were consistent with the bioinformatics analysis. The expression levels of SQSTM1 and VEGFA in epilepsy model samples were significantly higher than those in normal control, while BNIP and WIPI2 expression levels were notably decreased. The final hub gene-based LASSO regression model accurately predicted the occurrence of epilepsy (AUC = 0.88).

Conclusions

Through bioinformatics analysis of public data, we identified 40 candidate autophagy-related genes associated with mTLE. SQSTM1, VEGFA, BNIP and WIPI2 may play significant roles in autophagy, influencing the onset and development of mTLE by regulating autophagy pathway. These findings deepen our understanding of mTLE, and may serve as sensitive and valuable indicators for the prognosis and diagnosis of this condition.
Appendix
Available only for authorised users
Literature
2.
go back to reference Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, et al. Non-coding RNAs: new biomarkers and therapeutic targets for temporal lobe epilepsy. Int J Mol Sci. 2022;23(6):3063.PubMedPubMedCentralCrossRef Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, et al. Non-coding RNAs: new biomarkers and therapeutic targets for temporal lobe epilepsy. Int J Mol Sci. 2022;23(6):3063.PubMedPubMedCentralCrossRef
4.
go back to reference Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna). 2015;122(6):849–62.PubMedCrossRef Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna). 2015;122(6):849–62.PubMedCrossRef
5.
go back to reference Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.PubMedCrossRef Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.PubMedCrossRef
6.
go back to reference Knecht E, Criado-Garcia O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, et al. Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy. 2012;8(4):701–3.PubMedCrossRef Knecht E, Criado-Garcia O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, et al. Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy. 2012;8(4):701–3.PubMedCrossRef
7.
go back to reference Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol. 2018;44(1):6–17.PubMedCrossRef Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol. 2018;44(1):6–17.PubMedCrossRef
8.
go back to reference McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci. 2012;32(45):15704–14.PubMedPubMedCentralCrossRef McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci. 2012;32(45):15704–14.PubMedPubMedCentralCrossRef
9.
go back to reference Carvill GL, Liu A, Mandelstam S, Schneider A, Lacroix A, Zemel M, et al. Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene WDR45. Epilepsia. 2018;59(1):e5-13.PubMedCrossRef Carvill GL, Liu A, Mandelstam S, Schneider A, Lacroix A, Zemel M, et al. Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene WDR45. Epilepsia. 2018;59(1):e5-13.PubMedCrossRef
10.
go back to reference Xiao D, Lv J, Zheng Z, Liu Y, Zhang Y, Luo C, et al. Mechanisms of microRNA142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. Int J Mol Med. 2021;47(6):98.PubMedPubMedCentralCrossRef Xiao D, Lv J, Zheng Z, Liu Y, Zhang Y, Luo C, et al. Mechanisms of microRNA142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. Int J Mol Med. 2021;47(6):98.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci. 2015;26(2):225–37.PubMedCrossRef Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci. 2015;26(2):225–37.PubMedCrossRef
13.
go back to reference Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, et al. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain. 2019;142(6):1616–30.PubMedCrossRef Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, et al. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain. 2019;142(6):1616–30.PubMedCrossRef
14.
go back to reference You J, Huang H, Chan CTY, Li L. Pathological targets for treating temporal lobe epilepsy: discoveries from microscale to macroscale. Front Neurol. 2021;12:779558.PubMedCrossRef You J, Huang H, Chan CTY, Li L. Pathological targets for treating temporal lobe epilepsy: discoveries from microscale to macroscale. Front Neurol. 2021;12:779558.PubMedCrossRef
15.
go back to reference Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J. Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett. 2007;414(1):57–60.PubMedCrossRef Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J. Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett. 2007;414(1):57–60.PubMedCrossRef
16.
go back to reference Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z. Autophagy is upregulated in rats with status epilepticus and partly inhibited by vitamin E. Biochem Biophys Res Commun. 2009;379(4):949–53.PubMedCrossRef Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z. Autophagy is upregulated in rats with status epilepticus and partly inhibited by vitamin E. Biochem Biophys Res Commun. 2009;379(4):949–53.PubMedCrossRef
17.
go back to reference Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31(6):1100–7.PubMedCrossRef Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31(6):1100–7.PubMedCrossRef
18.
go back to reference Rami A, Benz A. Exclusive activation of caspase-3 in mossy fibers and altered dynamics of autophagy markers in the mice hippocampus upon status epilepticus induced by kainic acid. Mol Neurobiol. 2018;55(5):4492–503.PubMed Rami A, Benz A. Exclusive activation of caspase-3 in mossy fibers and altered dynamics of autophagy markers in the mice hippocampus upon status epilepticus induced by kainic acid. Mol Neurobiol. 2018;55(5):4492–503.PubMed
20.
go back to reference Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy. 2021;17(12):3908–23.PubMedPubMedCentralCrossRef Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy. 2021;17(12):3908–23.PubMedPubMedCentralCrossRef
21.
go back to reference Dobson-Stone C, Hallupp M, Shahheydari H, Ragagnin AMG, Chatterton Z, Carew-Jones F, et al. CYLD is a causative gene for frontotemporal dementia - amyotrophic lateral sclerosis. Brain. 2020;143(3):783–99.PubMedPubMedCentralCrossRef Dobson-Stone C, Hallupp M, Shahheydari H, Ragagnin AMG, Chatterton Z, Carew-Jones F, et al. CYLD is a causative gene for frontotemporal dementia - amyotrophic lateral sclerosis. Brain. 2020;143(3):783–99.PubMedPubMedCentralCrossRef
22.
go back to reference Sharma V, Sood R, Lou D, Hung TY, Levesque M, Han Y, et al. 4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A. 2021;118(15):e2025522118.PubMedPubMedCentralCrossRef Sharma V, Sood R, Lou D, Hung TY, Levesque M, Han Y, et al. 4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A. 2021;118(15):e2025522118.PubMedPubMedCentralCrossRef
23.
go back to reference He Z, Chen H, Zhong Y, Yang Q, Wang X, Chen R, et al. MicroRNA 223 targeting ATG16L1 affects microglial autophagy in the kainic acid model of temporal lobe epilepsy. Front Neurol. 2021;12:704550.PubMedPubMedCentralCrossRef He Z, Chen H, Zhong Y, Yang Q, Wang X, Chen R, et al. MicroRNA 223 targeting ATG16L1 affects microglial autophagy in the kainic acid model of temporal lobe epilepsy. Front Neurol. 2021;12:704550.PubMedPubMedCentralCrossRef
24.
go back to reference Castaneda-Cabral JL, Colunga-Duran A, Urena-Guerrero ME, Beas-Zarate C, Nunez-Lumbreras MLA, Orozco-Suarez S, et al. Expression of VEGF- and tight junction-related proteins in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy. Microvasc Res. 2020;132:104059.PubMedCrossRef Castaneda-Cabral JL, Colunga-Duran A, Urena-Guerrero ME, Beas-Zarate C, Nunez-Lumbreras MLA, Orozco-Suarez S, et al. Expression of VEGF- and tight junction-related proteins in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy. Microvasc Res. 2020;132:104059.PubMedCrossRef
25.
go back to reference Gao D, Ma L, Xie Y, Xiao B, Xue S, Xiao W, et al. Electroacupuncture promotes autophagy by regulating the AKT/mTOR signaling pathway in temporal lobe Epilepsy. Neurochem Res. 2022;47(8):2396–404.PubMedCrossRef Gao D, Ma L, Xie Y, Xiao B, Xue S, Xiao W, et al. Electroacupuncture promotes autophagy by regulating the AKT/mTOR signaling pathway in temporal lobe Epilepsy. Neurochem Res. 2022;47(8):2396–404.PubMedCrossRef
26.
go back to reference Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, et al. MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol. 2018;233(9):7022–34.PubMedCrossRef Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, et al. MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol. 2018;233(9):7022–34.PubMedCrossRef
27.
go back to reference Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36(8):827–35.PubMedCrossRef Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36(8):827–35.PubMedCrossRef
28.
go back to reference Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. 1989. Biochem Biophys Res Commun. 2012;425(3):540–7.PubMedCrossRef Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. 1989. Biochem Biophys Res Commun. 2012;425(3):540–7.PubMedCrossRef
29.
go back to reference Castaneda-Cabral JL, Beas-Zarate C, Rocha-Arrieta LL, Orozco-Suarez SA, Alonso-Vanegas M, Guevara-Guzman R, et al. Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol. 2019;328:68–72.PubMedCrossRef Castaneda-Cabral JL, Beas-Zarate C, Rocha-Arrieta LL, Orozco-Suarez SA, Alonso-Vanegas M, Guevara-Guzman R, et al. Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol. 2019;328:68–72.PubMedCrossRef
30.
go back to reference Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H, et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience. 2008;151(1):232–41.PubMedCrossRef Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H, et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience. 2008;151(1):232–41.PubMedCrossRef
31.
go back to reference Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130(Pt 7):1942–56.PubMedCrossRef Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130(Pt 7):1942–56.PubMedCrossRef
32.
go back to reference Nicoletti JN, Lenzer J, Salerni EA, Shah SK, Elkady A, Khalid S, et al. Vascular endothelial growth factor attenuates status epilepticus-induced behavioral impairments in rats. Epilepsy Behav. 2010;19(3):272–7.PubMedPubMedCentralCrossRef Nicoletti JN, Lenzer J, Salerni EA, Shah SK, Elkady A, Khalid S, et al. Vascular endothelial growth factor attenuates status epilepticus-induced behavioral impairments in rats. Epilepsy Behav. 2010;19(3):272–7.PubMedPubMedCentralCrossRef
33.
go back to reference Lenzer-Fanara JR, Li T, Salerni EA, Payen F, Croll SD. VEGF treatment during status epilepticus attenuates long-term seizure-associated alterations in astrocyte morphology. Epilepsy Behav. 2017;70(Pt A):33–44.PubMedCrossRef Lenzer-Fanara JR, Li T, Salerni EA, Payen F, Croll SD. VEGF treatment during status epilepticus attenuates long-term seizure-associated alterations in astrocyte morphology. Epilepsy Behav. 2017;70(Pt A):33–44.PubMedCrossRef
34.
go back to reference Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF modulates neurogenesis and microvascular remodeling in epileptogenesis after status epilepticus in immature rats. Front Neurol. 2021;12:808568.PubMedPubMedCentralCrossRef Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF modulates neurogenesis and microvascular remodeling in epileptogenesis after status epilepticus in immature rats. Front Neurol. 2021;12:808568.PubMedPubMedCentralCrossRef
36.
go back to reference van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130(Pt 2):521–34.PubMedCrossRef van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130(Pt 2):521–34.PubMedCrossRef
38.
go back to reference Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506–22.PubMedCrossRef Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506–22.PubMedCrossRef
39.
go back to reference Dooley HC, Wilson MI, Tooze SA. WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy. 2015;11(1):190–1.PubMedPubMedCentral Dooley HC, Wilson MI, Tooze SA. WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy. 2015;11(1):190–1.PubMedPubMedCentral
40.
go back to reference Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 2014;55(2):238–52.PubMedPubMedCentralCrossRef Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 2014;55(2):238–52.PubMedPubMedCentralCrossRef
41.
go back to reference Maroofian R, Gubas A, Kaiyrzhanov R, Scala M, Hundallah K, Severino M, et al. Homozygous missense WIPI2 variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Commun. 2021;3(3):fcab183.PubMedPubMedCentralCrossRef Maroofian R, Gubas A, Kaiyrzhanov R, Scala M, Hundallah K, Severino M, et al. Homozygous missense WIPI2 variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Commun. 2021;3(3):fcab183.PubMedPubMedCentralCrossRef
42.
go back to reference Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy. 2013;9(3):345–60.PubMedPubMedCentralCrossRef Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy. 2013;9(3):345–60.PubMedPubMedCentralCrossRef
43.
go back to reference Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14(1):146–57.PubMedCrossRef Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14(1):146–57.PubMedCrossRef
44.
go back to reference Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–81.PubMedPubMedCentralCrossRef Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–81.PubMedPubMedCentralCrossRef
45.
go back to reference Zheng Q, Zhu T, Hu H, Zhao Y, Ying Y, Luo X, et al. TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull. 2020;155:48–60.PubMedCrossRef Zheng Q, Zhu T, Hu H, Zhao Y, Ying Y, Luo X, et al. TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull. 2020;155:48–60.PubMedCrossRef
46.
go back to reference Passantino R, Cascio C, Deidda I, Galizzi G, Russo D, Spedale G, et al. Identifying protein partners of CLN8, an ER-resident protein involved in neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2013;1833(3):529–40.PubMedCrossRef Passantino R, Cascio C, Deidda I, Galizzi G, Russo D, Spedale G, et al. Identifying protein partners of CLN8, an ER-resident protein involved in neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2013;1833(3):529–40.PubMedCrossRef
47.
go back to reference Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci. 2007;32(2):95–100.PubMedCrossRef Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci. 2007;32(2):95–100.PubMedCrossRef
48.
go back to reference Shin J. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res. 1998;21(6):629–33.PubMedCrossRef Shin J. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res. 1998;21(6):629–33.PubMedCrossRef
49.
go back to reference Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131–45.PubMedCrossRef Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131–45.PubMedCrossRef
50.
go back to reference Pellegrini P, Hervera A, Varea O, Brewer MK, Lopez-Soldado I, Guitart A, et al. Lack of p62 impairs glycogen aggregation and exacerbates Pathology in a mouse model of myoclonic epilepsy of Lafora. Mol Neurobiol. 2022;59(2):1214–29.PubMedCrossRef Pellegrini P, Hervera A, Varea O, Brewer MK, Lopez-Soldado I, Guitart A, et al. Lack of p62 impairs glycogen aggregation and exacerbates Pathology in a mouse model of myoclonic epilepsy of Lafora. Mol Neurobiol. 2022;59(2):1214–29.PubMedCrossRef
51.
go back to reference Li T, Zhang H, Wang Z, Gao S, Zhang X, Zhu H, et al. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance. Cancer Cell Int. 2022;22(1):120.PubMedPubMedCentralCrossRef Li T, Zhang H, Wang Z, Gao S, Zhang X, Zhu H, et al. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance. Cancer Cell Int. 2022;22(1):120.PubMedPubMedCentralCrossRef
52.
go back to reference Ying C, Ying L, Yanxia L, Le W, Lili C. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem. 2020;122(2):151485.PubMedCrossRef Ying C, Ying L, Yanxia L, Le W, Lili C. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem. 2020;122(2):151485.PubMedCrossRef
53.
go back to reference Cho Y, Jeong YJ, Song KH, Chung IK, Magae J, Kwon TK, et al. 4-O-Methylascochlorin-mediated BNIP-3 expression controls the balance of apoptosis and autophagy in cervical carcinoma cells. Int J Mol Sci. 2022;23(23):15138.PubMedPubMedCentralCrossRef Cho Y, Jeong YJ, Song KH, Chung IK, Magae J, Kwon TK, et al. 4-O-Methylascochlorin-mediated BNIP-3 expression controls the balance of apoptosis and autophagy in cervical carcinoma cells. Int J Mol Sci. 2022;23(23):15138.PubMedPubMedCentralCrossRef
Metadata
Title
Autophagy-related genes in mesial temporal lobe epilepsy: an integrated bioinformatics analysis
Authors
Man Yang
Yinchao Li
Xianyue Liu
Shangnan Zou
Lei Lei
Qihang Zou
Yaqian Zhang
Yubao Fang
Shuda Chen
Liemin Zhou
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Acta Epileptologica / Issue 1/2024
Print ISSN: 2096-9384
Electronic ISSN: 2524-4434
DOI
https://doi.org/10.1186/s42494-024-00160-9

Other articles of this Issue 1/2024

Acta Epileptologica 1/2024 Go to the issue