Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Epilepsy | Research

A novel loss-of-function mutation of the voltage-gated potassium channel Kv10.2 involved in epilepsy and autism

Authors: Jesús Galán-Vidal, Paula G. Socuéllamos, María Baena-Nuevo, Lizbeth Contreras, Teresa González, María S. Pérez-Poyato, Carmen Valenzuela, Domingo González-Lamuño, Alberto Gandarillas

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

Novel developmental mutations associated with disease are a continuous challenge in medicine. Clinical consequences caused by these mutations include neuron and cognitive alterations that can lead to epilepsy or autism spectrum disorders. Often, it is difficult to identify the physiological defects and the appropriate treatments.

Results

We have isolated and cultured primary cells from the skin of a patient with combined epilepsy and autism syndrome. A mutation in the potassium channel protein Kv10.2 was identified. We have characterised the alteration of the mutant channel and found that it causes loss of function (LOF). Primary cells from the skin displayed a very striking growth defect and increased differentiation. In vitro treatment with various carbonic anhydrase inhibitors with various degrees of specificity for potassium channels, (Brinzolamide, Acetazolamide, Retigabine) restored the activation capacity of the mutated channel. Interestingly, the drugs also recovered in vitro the expansion capacity of the mutated skin cells. Furthermore, treatment with Acetazolamide clearly improved the patient regarding epilepsy and cognitive skills. When the treatment was temporarily halted the syndrome worsened again.

Conclusions

By in vitro studying primary cells from the patient and the activation capacity of the mutated protein, we could first, find a readout for the cellular defects and second, test pharmaceutical treatments that proved to be beneficial. The results show the involvement of a novel LOF mutation of a Potassium channel in autism syndrome with epilepsy and the great potential of in vitro cultures of primary cells in personalised medicine of rare diseases.
Literature
1.
go back to reference Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, Park BY, Snyder NW, Schendel D, Volk H, Windham GC, Newschaffer C. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health. 2017;38:81–102.PubMedCrossRef Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, Park BY, Snyder NW, Schendel D, Volk H, Windham GC, Newschaffer C. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health. 2017;38:81–102.PubMedCrossRef
2.
go back to reference Sharma SR, Gonda X, Tarazi FI. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104.PubMedCrossRef Sharma SR, Gonda X, Tarazi FI. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104.PubMedCrossRef
3.
go back to reference Chang BS, Lowenstein DH. Mechanisms of disease Epilepsy. N Engl J Med. 2003;13:1257–66.CrossRef Chang BS, Lowenstein DH. Mechanisms of disease Epilepsy. N Engl J Med. 2003;13:1257–66.CrossRef
5.
go back to reference Buckley AW, Holmes GL. Epilepsy and autism. Cold Spring Harbor Perspect Med. 2016;6(4):a022749.CrossRef Buckley AW, Holmes GL. Epilepsy and autism. Cold Spring Harbor Perspect Med. 2016;6(4):a022749.CrossRef
6.
7.
go back to reference Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci. 2020;41(4):749–61.PubMedCrossRef Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci. 2020;41(4):749–61.PubMedCrossRef
8.
go back to reference Schmunk G, Gargus JJ. Channelopathy pathogenesis in autism spectrum disorders. Front Genet. 2013;4:1–20.CrossRef Schmunk G, Gargus JJ. Channelopathy pathogenesis in autism spectrum disorders. Front Genet. 2013;4:1–20.CrossRef
9.
go back to reference Luca G, Ilenio S, Martino C, Luigi C, Fabio F, Maria CD, Mauro P. Update on the implication of potassium channels in autism: K+ channelautism spectrum disorder. Front Cell Neurosci. 2015;9:1–14. Luca G, Ilenio S, Martino C, Luigi C, Fabio F, Maria CD, Mauro P. Update on the implication of potassium channels in autism: K+ channelautism spectrum disorder. Front Cell Neurosci. 2015;9:1–14.
10.
go back to reference Saganich MJ, Vega-Saenz De Miera E, Nadal MS, Baker H, Coetzee WA, Rudy B. Cloning of components of a novel subthreshold-activating K+ channel with a unique pattern of expression in the cerebral cortex. J Neurosci. 1999;19(24):10789–802.PubMedPubMedCentralCrossRef Saganich MJ, Vega-Saenz De Miera E, Nadal MS, Baker H, Coetzee WA, Rudy B. Cloning of components of a novel subthreshold-activating K+ channel with a unique pattern of expression in the cerebral cortex. J Neurosci. 1999;19(24):10789–802.PubMedPubMedCentralCrossRef
11.
go back to reference González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K+ channels: function-structural overview. Compr Physiol. 2012;2(3):2087–149.PubMedCrossRef González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K+ channels: function-structural overview. Compr Physiol. 2012;2(3):2087–149.PubMedCrossRef
12.
go back to reference Ju M, Wray D. Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett. 2002;524(1–3):204–10.PubMedCrossRef Ju M, Wray D. Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett. 2002;524(1–3):204–10.PubMedCrossRef
13.
go back to reference Huang X, Dubuc AM, Hashizume R, Berg J, He Y, Wang J, Chiang C, Cooper MK, Northcott PA, Taylor MD, Barnes MJ, Tihan T, Chen J, Hackett CS, Weiss WA, David James C, Rowitch DH, Shuman MA, Jan YN, Jan LY. Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes Dev. 2012;26(16):1780–96.PubMedPubMedCentralCrossRef Huang X, Dubuc AM, Hashizume R, Berg J, He Y, Wang J, Chiang C, Cooper MK, Northcott PA, Taylor MD, Barnes MJ, Tihan T, Chen J, Hackett CS, Weiss WA, David James C, Rowitch DH, Shuman MA, Jan YN, Jan LY. Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes Dev. 2012;26(16):1780–96.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett. 2006;580(12):2850–2.PubMedCrossRef Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett. 2006;580(12):2850–2.PubMedCrossRef
16.
go back to reference Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54(7):1270–81.PubMedPubMedCentralCrossRef Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54(7):1270–81.PubMedPubMedCentralCrossRef
17.
go back to reference Yang Y, Vasylyev D, Dib-Hajj F, Veeramah KR, Hammer MF, Dib-Hajj SD, Waxman SG. Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state. J Neurosci. 2013;33(42):16586–93.PubMedPubMedCentralCrossRef Yang Y, Vasylyev D, Dib-Hajj F, Veeramah KR, Hammer MF, Dib-Hajj SD, Waxman SG. Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state. J Neurosci. 2013;33(42):16586–93.PubMedPubMedCentralCrossRef
18.
go back to reference Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.PubMedCrossRef Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.PubMedCrossRef
19.
go back to reference O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, MacKenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–9.PubMedPubMedCentralCrossRef O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, MacKenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–9.PubMedPubMedCentralCrossRef
20.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedPubMedCentralCrossRef Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedPubMedCentralCrossRef
22.
go back to reference Marques-Carvalho MJ, Sahoo N, Muskett FW, Vieira-Pires RS, Gabant G, Cadene M, Schönherr R, Morais-Cabral JH. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel. J Mol Biol. 2012;423(1):34–46.PubMedCrossRef Marques-Carvalho MJ, Sahoo N, Muskett FW, Vieira-Pires RS, Gabant G, Cadene M, Schönherr R, Morais-Cabral JH. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel. J Mol Biol. 2012;423(1):34–46.PubMedCrossRef
23.
go back to reference Dai G, Zagotta WN. Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels. Elife. 2017;6:26355.CrossRef Dai G, Zagotta WN. Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels. Elife. 2017;6:26355.CrossRef
24.
go back to reference Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975;6(3):317–30.PubMedCrossRef Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975;6(3):317–30.PubMedCrossRef
25.
go back to reference Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73(4):713–24.PubMedCrossRef Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73(4):713–24.PubMedCrossRef
26.
go back to reference Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90(3):732–7.PubMedCrossRef Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90(3):732–7.PubMedCrossRef
27.
go back to reference Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem. 2021;209: 112923.PubMedCrossRef Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem. 2021;209: 112923.PubMedCrossRef
28.
go back to reference van Berkel MA, Elefritz JL. Evaluating off-label uses of acetazolamide. Am J Health Syst Pharm. 2018;75(8):524–31.PubMedCrossRef van Berkel MA, Elefritz JL. Evaluating off-label uses of acetazolamide. Am J Health Syst Pharm. 2018;75(8):524–31.PubMedCrossRef
29.
go back to reference Reiss WG, Oles KS. Acetazolamide in the treatment of seizures. Ann Pharmacother. 1996;30(5):514–8.PubMedCrossRef Reiss WG, Oles KS. Acetazolamide in the treatment of seizures. Ann Pharmacother. 1996;30(5):514–8.PubMedCrossRef
30.
go back to reference Martínez-Monseny AF, Bolasell M, Callejón-Póo L, Cuadras D, Freniche V, Itzep DC, Gassiot S, Arango P, Casas-Alba D, de la Morena E, Corral J, Montero R, Pérez-Cerdá C, Pérez B, Artuch R, Jaeken J, Serrano M, Velázquez-Fragua R, García O, Gutierrez-Solana LG, Macaya A, Pérez-Dueñas B, Aguilera-Albesa S, López L, Miranda MC, Carratala F, Yoldi ME, López-Laso E, Sierra-Córcoles MC, Sebastián-García I, Aísa E, Cancho-Candela R, Carrasco-Marina ML, Couce ML, Roldán S, Muchart J, Morales M, Conde-Lorenzo N. AZATAX: Acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann Neurol. 2019;85(5):740–51.PubMedCrossRef Martínez-Monseny AF, Bolasell M, Callejón-Póo L, Cuadras D, Freniche V, Itzep DC, Gassiot S, Arango P, Casas-Alba D, de la Morena E, Corral J, Montero R, Pérez-Cerdá C, Pérez B, Artuch R, Jaeken J, Serrano M, Velázquez-Fragua R, García O, Gutierrez-Solana LG, Macaya A, Pérez-Dueñas B, Aguilera-Albesa S, López L, Miranda MC, Carratala F, Yoldi ME, López-Laso E, Sierra-Córcoles MC, Sebastián-García I, Aísa E, Cancho-Candela R, Carrasco-Marina ML, Couce ML, Roldán S, Muchart J, Morales M, Conde-Lorenzo N. AZATAX: Acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann Neurol. 2019;85(5):740–51.PubMedCrossRef
31.
go back to reference Verbrugge FH, Martens P, Ameloot K, Haemels V, Penders J, Dupont M, Tang WHW, Droogné W, Mullens W. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur J Heart Fail. 2019;21(11):1415–22.PubMedCrossRef Verbrugge FH, Martens P, Ameloot K, Haemels V, Penders J, Dupont M, Tang WHW, Droogné W, Mullens W. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur J Heart Fail. 2019;21(11):1415–22.PubMedCrossRef
32.
go back to reference Supuran CT. An update on drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol. 2020;16(4):297–307.PubMedCrossRef Supuran CT. An update on drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol. 2020;16(4):297–307.PubMedCrossRef
33.
go back to reference Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem. 2013;21(22):7210–5.PubMedCrossRef Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem. 2013;21(22):7210–5.PubMedCrossRef
34.
go back to reference Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia. 2012;53(3):412–24.PubMedCrossRef Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia. 2012;53(3):412–24.PubMedCrossRef
35.
go back to reference Main MJ, Cryan JE, Dupere JRB, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol. 2000;58(2):253–62.PubMedCrossRef Main MJ, Cryan JE, Dupere JRB, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol. 2000;58(2):253–62.PubMedCrossRef
36.
go back to reference Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol. 2000;58(3):591–600.PubMedCrossRef Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol. 2000;58(3):591–600.PubMedCrossRef
37.
go back to reference Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: Changes in electroresponsive properties and synaptic transmission. Mol Pharmacol. 2002;61(4):921–7.PubMedCrossRef Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: Changes in electroresponsive properties and synaptic transmission. Mol Pharmacol. 2002;61(4):921–7.PubMedCrossRef
38.
go back to reference de Pedro I, Galán-Vidal J, Freije A, de Diego E, Gandarillas A. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene. 2021;40(1):152–62.PubMedCrossRef de Pedro I, Galán-Vidal J, Freije A, de Diego E, Gandarillas A. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene. 2021;40(1):152–62.PubMedCrossRef
39.
go back to reference Bliss SL. Test Reviews: Newborg, J. (2005). Battelle Developmental Inventory−Second Edition. Itasca, IL: Riverside. Journal of Psychoeducational Assessment. 2007. p. 409–15. Bliss SL. Test Reviews: Newborg, J. (2005). Battelle Developmental Inventory−Second Edition. Itasca, IL: Riverside. Journal of Psychoeducational Assessment. 2007. p. 409–15.
40.
go back to reference Matson JL, Hess JA, Sipes M, Horovitz M. Developmental profiles from the Battelle developmental inventory: a comparison of toddlers diagnosed with Down Syndrome, global developmental delay and premature birth. Dev Neurorehabil. 2010;13(4):234–8.PubMedCrossRef Matson JL, Hess JA, Sipes M, Horovitz M. Developmental profiles from the Battelle developmental inventory: a comparison of toddlers diagnosed with Down Syndrome, global developmental delay and premature birth. Dev Neurorehabil. 2010;13(4):234–8.PubMedCrossRef
41.
go back to reference Goldin RL, Matson JL, Beighley JS, Jang J. Autism spectrum disorder severity as a predictor of Battelle Developmental Inventory-Second Edition (BDI-2) scores in toddlers. Dev Neurorehabil. 2014;17(1):39–43.PubMedCrossRef Goldin RL, Matson JL, Beighley JS, Jang J. Autism spectrum disorder severity as a predictor of Battelle Developmental Inventory-Second Edition (BDI-2) scores in toddlers. Dev Neurorehabil. 2014;17(1):39–43.PubMedCrossRef
42.
go back to reference Liu Y, Tang Y, Yan J, Du D, Yang Y, Chen F. Deletion of Kv10.2 causes abnormal dendritic arborization and epilepsy susceptibility. Neurochem Res. 2020;45(12):2949–58.PubMedCrossRef Liu Y, Tang Y, Yan J, Du D, Yang Y, Chen F. Deletion of Kv10.2 causes abnormal dendritic arborization and epilepsy susceptibility. Neurochem Res. 2020;45(12):2949–58.PubMedCrossRef
43.
go back to reference Griswold AJ, Ma D, Sacharow SJ, Robinson JL, Jaworski JM, Wright HH, Abramson RK, Lybæk H, Øyen N, Cuccaro ML, Gilbert JR, Pericak-Vance MA. A de novo 1.5Mb microdeletion on chromosome 14q23.2–23.3 in a patient with autism and spherocytosis. Autism Res. 2011;4(3):221–7.PubMedPubMedCentralCrossRef Griswold AJ, Ma D, Sacharow SJ, Robinson JL, Jaworski JM, Wright HH, Abramson RK, Lybæk H, Øyen N, Cuccaro ML, Gilbert JR, Pericak-Vance MA. A de novo 1.5Mb microdeletion on chromosome 14q23.2–23.3 in a patient with autism and spherocytosis. Autism Res. 2011;4(3):221–7.PubMedPubMedCentralCrossRef
44.
go back to reference Lybæk H, Øyen N, Fauske L, Houge G. A 2.1 Mb deletion adjacent but distal to a 14q21q23 paracentric inversion in a family with spherocytosis and severe learning difficulties. Clin Genet. 2008;74(6):553–9.PubMedCrossRef Lybæk H, Øyen N, Fauske L, Houge G. A 2.1 Mb deletion adjacent but distal to a 14q21q23 paracentric inversion in a family with spherocytosis and severe learning difficulties. Clin Genet. 2008;74(6):553–9.PubMedCrossRef
45.
go back to reference Imbrigiotta N, Lenzo P, Bonsignore M. A Case of deletion of chromosome 14q23.3. Imbrigiotta N, Lenzo P, Bonsignore M. A Case of deletion of chromosome 14q23.3.
46.
go back to reference de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BBA, Brunner HG, Veltman JA, Vissers LELM. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–9.PubMedCrossRef de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BBA, Brunner HG, Veltman JA, Vissers LELM. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–9.PubMedCrossRef
47.
go back to reference Li M, Wang J, Liu Y, Wu J, Li F, Feng S, Du D, Chen F. Central changes in the Kv10.2 potassium channel in stress-induced hypertension rats. NeuroReport. 2019;30(9):637–44.PubMedCrossRef Li M, Wang J, Liu Y, Wu J, Li F, Feng S, Du D, Chen F. Central changes in the Kv10.2 potassium channel in stress-induced hypertension rats. NeuroReport. 2019;30(9):637–44.PubMedCrossRef
48.
go back to reference Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased expression of Kv10.2 in the hippocampus attenuates valproic acid-induced autism-like behaviors in rats. Neurochem Res. 2019;44(12):2796–808.PubMedCrossRef Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased expression of Kv10.2 in the hippocampus attenuates valproic acid-induced autism-like behaviors in rats. Neurochem Res. 2019;44(12):2796–808.PubMedCrossRef
51.
52.
go back to reference Lauritzen I, Chemin J, Honoré E, Jodar M, Guy N, Lazdunski M, et al. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep. 2005;6(7):642–8.PubMedPubMedCentralCrossRef Lauritzen I, Chemin J, Honoré E, Jodar M, Guy N, Lazdunski M, et al. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep. 2005;6(7):642–8.PubMedPubMedCentralCrossRef
53.
go back to reference Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta Biomembranes. 2014;1838:682–91.CrossRef Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta Biomembranes. 2014;1838:682–91.CrossRef
54.
go back to reference Mollinedo P, Kapitansky O, Gonzalez-Lamuno D, Zaslavsky A, Real P, Gozes I, Gandarillas A, Fernandez-Luna JL. Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Sci Rep. 2019;9(1):736.PubMedPubMedCentralCrossRef Mollinedo P, Kapitansky O, Gonzalez-Lamuno D, Zaslavsky A, Real P, Gozes I, Gandarillas A, Fernandez-Luna JL. Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Sci Rep. 2019;9(1):736.PubMedPubMedCentralCrossRef
55.
go back to reference Allon M, Am J. Hyperkalemia in End-Stage and Management1’2. J Am Soc Nephrol. 1995;6(4):1134–42.PubMedCrossRef Allon M, Am J. Hyperkalemia in End-Stage and Management1’2. J Am Soc Nephrol. 1995;6(4):1134–42.PubMedCrossRef
56.
go back to reference Sowinski KM, Cronin D, Mueller BA, Kraus MA. Subcutaneous terbutaline use in CKD to reduce potassium concentrations. Am J Kidney Dis. 2005;45(6):1040–5.PubMedCrossRef Sowinski KM, Cronin D, Mueller BA, Kraus MA. Subcutaneous terbutaline use in CKD to reduce potassium concentrations. Am J Kidney Dis. 2005;45(6):1040–5.PubMedCrossRef
57.
go back to reference Clausen T, Everts ME. Regulation of the Na, K-pump in skeletal muscle. Kidney Int. 1989;35(1):1–13.PubMedCrossRef Clausen T, Everts ME. Regulation of the Na, K-pump in skeletal muscle. Kidney Int. 1989;35(1):1–13.PubMedCrossRef
58.
go back to reference Gosmanov AR, Wong JA, Thomason DB. Duality of G protein-coupled mechanisms for β-adrenergic activation of NKCC activity in skeletal muscle. Am J Physiol Cell Physiol. 2002;283(4):1025–32.CrossRef Gosmanov AR, Wong JA, Thomason DB. Duality of G protein-coupled mechanisms for β-adrenergic activation of NKCC activity in skeletal muscle. Am J Physiol Cell Physiol. 2002;283(4):1025–32.CrossRef
59.
go back to reference Roca I, González-Castro L, Maynou J, Palacios L, Fernández H, Couce ML, Fernández-Marmiesse A. PattRec: an easy-to-use CNV detection tool optimized for targeted NGS assays with diagnostic purposes. Genomics. 2020;112(2):1245–56.PubMedCrossRef Roca I, González-Castro L, Maynou J, Palacios L, Fernández H, Couce ML, Fernández-Marmiesse A. PattRec: an easy-to-use CNV detection tool optimized for targeted NGS assays with diagnostic purposes. Genomics. 2020;112(2):1245–56.PubMedCrossRef
60.
go back to reference Huber CD, Kim Id BY, Lohmueller Id KE. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. 2020. Huber CD, Kim Id BY, Lohmueller Id KE. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. 2020.
61.
go back to reference Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.PubMedPubMedCentralCrossRef Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.PubMedPubMedCentralCrossRef
62.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedPubMedCentralCrossRef Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedPubMedCentralCrossRef
63.
go back to reference Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, Cannon-Albright LA, Teerlink CC, Stanford JL, Isaacs WB, Xu J, Cooney KA, Lange EM, Schleutker J, Carpten JD, Powell IJ, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Hsieh CL, Wiklund F, Catalona WJ, Foulkes WD, Mandal D, Eeles RA, Kote-Jarai Z, Bustamante CD, Schaid DJ, Hastie T, Ostrander EA, Bailey-Wilson JE, Radivojac P, Thibodeau SN, Whittemore AS, Sieh W. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85.PubMedPubMedCentralCrossRef Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, Cannon-Albright LA, Teerlink CC, Stanford JL, Isaacs WB, Xu J, Cooney KA, Lange EM, Schleutker J, Carpten JD, Powell IJ, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Hsieh CL, Wiklund F, Catalona WJ, Foulkes WD, Mandal D, Eeles RA, Kote-Jarai Z, Bustamante CD, Schaid DJ, Hastie T, Ostrander EA, Bailey-Wilson JE, Radivojac P, Thibodeau SN, Whittemore AS, Sieh W. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85.PubMedPubMedCentralCrossRef
64.
go back to reference Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue). Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue).
65.
go back to reference Rheinwald JG. Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells. In: Baserga R, editor. Cell growth and division. Oxford: IRL Press; 1989. p. 81–94. Rheinwald JG. Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells. In: Baserga R, editor. Cell growth and division. Oxford: IRL Press; 1989. p. 81–94.
67.
go back to reference Moreno C, Oliveras A, de La Cruz A, Bartolucci C, Muñoz C, Salar E, Gimeno JR, Severi S, Comes N, Felipe A, González T, Lambiase P, Valenzuela C. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc Res. 2015;107(4):613–23.PubMedCrossRef Moreno C, Oliveras A, de La Cruz A, Bartolucci C, Muñoz C, Salar E, Gimeno JR, Severi S, Comes N, Felipe A, González T, Lambiase P, Valenzuela C. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc Res. 2015;107(4):613–23.PubMedCrossRef
68.
go back to reference Moreno C, Oliveras A, Bartolucci C, Muñoz C, de la Cruz A, Peraza DA, Gimeno JR, Martín-Martínez M, Severi S, Felipe A, Lambiase PD, Gonzalez T, Valenzuela C. D242N, a KV7.1 LQTS mutation uncovers a key residue for Iks voltaje-dependence. J Mol Cell Cardiol. 2017;2017(110):61–9.CrossRef Moreno C, Oliveras A, Bartolucci C, Muñoz C, de la Cruz A, Peraza DA, Gimeno JR, Martín-Martínez M, Severi S, Felipe A, Lambiase PD, Gonzalez T, Valenzuela C. D242N, a KV7.1 LQTS mutation uncovers a key residue for Iks voltaje-dependence. J Mol Cell Cardiol. 2017;2017(110):61–9.CrossRef
69.
go back to reference Macias A, de la Cruz A, Peraza DA, de Benito-Bueno A, Gonzalez T, Valenzuela C. K V 1.5-K V β1.3 Recycling Is PKC-Dependent. Int J Mol Sci. 2021;22(3):1–12.CrossRef Macias A, de la Cruz A, Peraza DA, de Benito-Bueno A, Gonzalez T, Valenzuela C. K V 1.5-K V β1.3 Recycling Is PKC-Dependent. Int J Mol Sci. 2021;22(3):1–12.CrossRef
70.
go back to reference González T, Arias C, Caballero R, Moreno I, Delpón E, Tamargo J, Valenzuela C. Effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels: Stereoselective bupivacaine block. Br J Pharmacol. 2002;137(8):1269–79.PubMedPubMedCentralCrossRef González T, Arias C, Caballero R, Moreno I, Delpón E, Tamargo J, Valenzuela C. Effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels: Stereoselective bupivacaine block. Br J Pharmacol. 2002;137(8):1269–79.PubMedPubMedCentralCrossRef
71.
go back to reference Guizy M, David M, Arias C, Zhang L, Cofán M, Ruiz-Gutiérrez V, Ros E, Lillo MP, Martens JR, Valenzuela C. Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. J Mol Cell Cardiol. 2008;44(2):323–35.PubMedCrossRef Guizy M, David M, Arias C, Zhang L, Cofán M, Ruiz-Gutiérrez V, Ros E, Lillo MP, Martens JR, Valenzuela C. Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. J Mol Cell Cardiol. 2008;44(2):323–35.PubMedCrossRef
72.
go back to reference Lopez-Hurtado A, Peraza DA, Cercos P, Lagartera L, Gonzalez P, Dopazo XM, Herranz R, Gonzalez T, Martin-Martinez M, Mellström B, Naranjo JR, Valenzuela C, Gutierrez-Rodriguez M. Targeting the neuronal calcium sensor DREAM with small-molecules for Huntington’s disease treatment. Sci Rep. 2019;9(1):1–16.CrossRef Lopez-Hurtado A, Peraza DA, Cercos P, Lagartera L, Gonzalez P, Dopazo XM, Herranz R, Gonzalez T, Martin-Martinez M, Mellström B, Naranjo JR, Valenzuela C, Gutierrez-Rodriguez M. Targeting the neuronal calcium sensor DREAM with small-molecules for Huntington’s disease treatment. Sci Rep. 2019;9(1):1–16.CrossRef
Metadata
Title
A novel loss-of-function mutation of the voltage-gated potassium channel Kv10.2 involved in epilepsy and autism
Authors
Jesús Galán-Vidal
Paula G. Socuéllamos
María Baena-Nuevo
Lizbeth Contreras
Teresa González
María S. Pérez-Poyato
Carmen Valenzuela
Domingo González-Lamuño
Alberto Gandarillas
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02499-z

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue