Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 2/2024

Open Access 18-01-2023 | Epigenetics | Invited: Bscr Marshall Submissions

Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation

Authors: Pamela Swiatlowska, Thomas Iskratsch

Published in: Cardiovascular Drugs and Therapy | Issue 2/2024

Login to get access

Abstract

The local mechanical microenvironment impacts on the cell behavior. In the cardiovascular system, cells in both the heart and the vessels are exposed to continuous blood flow, blood pressure, stretching forces, and changing extracellular matrix stiffness. The force-induced signals travel all the way to the nucleus regulating epigenetic changes such as chromatin dynamics and gene expression. Mechanical cues are needed at the very early stage for a faultless embryological development, while later in life, aberrant mechanical signaling can lead to a range of pathologies, including diverse cardiovascular diseases. Hence, an investigation of force-generated epigenetic alteration at different time scales is needed to understand fully the phenotypic changes in disease onset and progression. That being so, cardiovascular mechano-epigenetics emerges as an attractive field of study. Given the rapid advances in this emergent field of research, this short review aims to provide an analysis of the state of knowledge of force-induced epigenetic changes in the cardiovascular field.
Literature
1.
go back to reference Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5.CrossRef Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5.CrossRef
2.
go back to reference Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):200.PubMedPubMedCentralCrossRef Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):200.PubMedPubMedCentralCrossRef
3.
go back to reference Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016;23(3):R157–71.PubMedPubMedCentralCrossRef Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016;23(3):R157–71.PubMedPubMedCentralCrossRef
4.
go back to reference Kumagai T, Akagi T, Desmond JC, et al. Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer. 2009;124(4):827–33.PubMedPubMedCentralCrossRef Kumagai T, Akagi T, Desmond JC, et al. Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer. 2009;124(4):827–33.PubMedPubMedCentralCrossRef
5.
go back to reference Jia H, Morris CD, Williams RM, Loring JF, Thomas EA. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A. 2015;112(1):E56-64.PubMedCrossRef Jia H, Morris CD, Williams RM, Loring JF, Thomas EA. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A. 2015;112(1):E56-64.PubMedCrossRef
6.
go back to reference Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics. 2008;9(12):1809–23.PubMedCrossRef Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics. 2008;9(12):1809–23.PubMedCrossRef
7.
go back to reference Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics. 2012;6:307–27.PubMedPubMedCentral Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics. 2012;6:307–27.PubMedPubMedCentral
8.
go back to reference Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15(12):825–33.PubMedPubMedCentralCrossRef Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15(12):825–33.PubMedPubMedCentralCrossRef
9.
go back to reference Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil. 2019;40(2):197–209.PubMedPubMedCentralCrossRef Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil. 2019;40(2):197–209.PubMedPubMedCentralCrossRef
10.
go back to reference Ward M, Iskratsch T. Mix and (mis-)match – The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020;1867(3):118436 Ward M, Iskratsch T. Mix and (mis-)match – The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020;1867(3):118436
11.
go back to reference Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.PubMedCrossRef Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.PubMedCrossRef
12.
go back to reference Swiatlowska P, Sit B, Feng Z, et al. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci Adv. 2022;8(15):eabm3471.PubMedPubMedCentralCrossRef Swiatlowska P, Sit B, Feng Z, et al. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci Adv. 2022;8(15):eabm3471.PubMedPubMedCentralCrossRef
13.
go back to reference Bertillot F, Miroshnikova YA, Wickstrom SA. SnapShot: mechanotransduction in the nucleus. Cell. 2022;185(19):3638-e1.PubMedCrossRef Bertillot F, Miroshnikova YA, Wickstrom SA. SnapShot: mechanotransduction in the nucleus. Cell. 2022;185(19):3638-e1.PubMedCrossRef
14.
go back to reference Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800-17 e22.PubMedPubMedCentralCrossRef Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800-17 e22.PubMedPubMedCentralCrossRef
15.
go back to reference Liu L, Rodriguez-Mateo C, Huang P, et al. Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proc Natl Acad Sci U S A. 2021;118(37):e2025281118. Liu L, Rodriguez-Mateo C, Huang P, et al. Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proc Natl Acad Sci U S A. 2021;118(37):e2025281118.
16.
go back to reference Barnes CE, English DM, Cowley SM. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 2019;63(1):97–107.PubMedPubMedCentralCrossRef Barnes CE, English DM, Cowley SM. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 2019;63(1):97–107.PubMedPubMedCentralCrossRef
17.
go back to reference Koester J, Miroshnikova YA, Ghatak S, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23(7):771–81.PubMedCrossRef Koester J, Miroshnikova YA, Ghatak S, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23(7):771–81.PubMedCrossRef
18.
go back to reference Pundel OJ, Blowes LM, Connelly JT. Extracellular adhesive cues physically define nucleolar structure and function. Adv Sci (Weinh). 2022;9(10): e2105545.PubMedCrossRef Pundel OJ, Blowes LM, Connelly JT. Extracellular adhesive cues physically define nucleolar structure and function. Adv Sci (Weinh). 2022;9(10): e2105545.PubMedCrossRef
19.
go back to reference Le HQ, Ghatak S, Yeung CY, et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol. 2016;18(8):864–75.PubMedCrossRef Le HQ, Ghatak S, Yeung CY, et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol. 2016;18(8):864–75.PubMedCrossRef
20.
21.
go back to reference Song Y, Soto J, Chen B, et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat Mater. 2022;21(10):1191–1199 Song Y, Soto J, Chen B, et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat Mater. 2022;21(10):1191–1199
23.
go back to reference He M, Huang TS, Li S, et al. Atheroprotective flow upregulates ITPR3 (Inositol 1,4,5-trisphosphate receptor 3) in vascular endothelium via KLF4 (Kruppel-like factor 4)-mediated histone modifications. Arterioscler Thromb Vasc Biol. 2019;39(5):902–14.PubMedPubMedCentralCrossRef He M, Huang TS, Li S, et al. Atheroprotective flow upregulates ITPR3 (Inositol 1,4,5-trisphosphate receptor 3) in vascular endothelium via KLF4 (Kruppel-like factor 4)-mediated histone modifications. Arterioscler Thromb Vasc Biol. 2019;39(5):902–14.PubMedPubMedCentralCrossRef
24.
go back to reference Andueza A, Kumar S, Kim J, et al. Endothelial Reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33(11): 108491.PubMedPubMedCentralCrossRef Andueza A, Kumar S, Kim J, et al. Endothelial Reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33(11): 108491.PubMedPubMedCentralCrossRef
26.
go back to reference Zeng L, Zhang Y, Chien S, Liu X, Shyy JY. The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J Biol Chem. 2003;278(27):24594–9.PubMedCrossRef Zeng L, Zhang Y, Chien S, Liu X, Shyy JY. The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J Biol Chem. 2003;278(27):24594–9.PubMedCrossRef
27.
go back to reference Zeng L, Xiao Q, Margariti A, et al. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol. 2006;174(7):1059–69.PubMedPubMedCentralCrossRef Zeng L, Xiao Q, Margariti A, et al. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol. 2006;174(7):1059–69.PubMedPubMedCentralCrossRef
28.
go back to reference Lee DY, Lee CI, Lin TE, et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109(6):1967–72.PubMedPubMedCentralCrossRef Lee DY, Lee CI, Lin TE, et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109(6):1967–72.PubMedPubMedCentralCrossRef
29.
go back to reference Yan ZQ, Yao QP, Zhang ML, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain. J Biomech. 2009;42(7):945–8.PubMedCrossRef Yan ZQ, Yao QP, Zhang ML, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain. J Biomech. 2009;42(7):945–8.PubMedCrossRef
30.
go back to reference Wang YH, Yan ZQ, Qi YX, et al. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng. 2010;38(3):729–37.PubMedCrossRef Wang YH, Yan ZQ, Qi YX, et al. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng. 2010;38(3):729–37.PubMedCrossRef
31.
go back to reference Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115(14):2971–9.PubMedPubMedCentralCrossRef Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115(14):2971–9.PubMedPubMedCentralCrossRef
32.
go back to reference Elibol B, Kilic U. High Levels of SIRT1 Expression as a Protective mechanism against disease-related conditions. Front Endocrinol (Lausanne). 2018;9:614.PubMedCrossRef Elibol B, Kilic U. High Levels of SIRT1 Expression as a Protective mechanism against disease-related conditions. Front Endocrinol (Lausanne). 2018;9:614.PubMedCrossRef
33.
go back to reference Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 2016;8(10):2290–307.PubMedCrossRef Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 2016;8(10):2290–307.PubMedCrossRef
34.
go back to reference Yuan P, Hu Q, He X, et al. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis. 2020;11(2):141.PubMedPubMedCentralCrossRef Yuan P, Hu Q, He X, et al. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis. 2020;11(2):141.PubMedPubMedCentralCrossRef
35.
go back to reference Chen W, Bacanamwo M, Harrison DG. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem. 2008;283(24):16293–8.PubMedPubMedCentralCrossRef Chen W, Bacanamwo M, Harrison DG. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem. 2008;283(24):16293–8.PubMedPubMedCentralCrossRef
37.
go back to reference Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMedCrossRef Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMedCrossRef
38.
go back to reference Newman AAC, Serbulea V, Baylis RA, et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRbeta and bioenergetic mechanisms. Nat Metab. 2021;3(2):166–81.PubMedPubMedCentralCrossRef Newman AAC, Serbulea V, Baylis RA, et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRbeta and bioenergetic mechanisms. Nat Metab. 2021;3(2):166–81.PubMedPubMedCentralCrossRef
39.
go back to reference Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600.PubMedPubMedCentralCrossRef Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600.PubMedPubMedCentralCrossRef
40.
go back to reference Zurek M, Aavik E, Mallick R, Yla-Herttuala S. Epigenetic regulation of vascular smooth muscle cell phenotype switching in atherosclerotic artery remodeling: a mini-review. Front Genet. 2021;12: 719456.PubMedPubMedCentralCrossRef Zurek M, Aavik E, Mallick R, Yla-Herttuala S. Epigenetic regulation of vascular smooth muscle cell phenotype switching in atherosclerotic artery remodeling: a mini-review. Front Genet. 2021;12: 719456.PubMedPubMedCentralCrossRef
41.
go back to reference Liu M, Espinosa-Diez C, Mahan S, et al. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell. 2021;56(19):2765-82 e10.PubMedPubMedCentralCrossRef Liu M, Espinosa-Diez C, Mahan S, et al. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell. 2021;56(19):2765-82 e10.PubMedPubMedCentralCrossRef
42.
go back to reference Kato N, Loh M, Takeuchi F, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47(11):1282–93.PubMedPubMedCentralCrossRef Kato N, Loh M, Takeuchi F, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47(11):1282–93.PubMedPubMedCentralCrossRef
43.
go back to reference Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol. 2020;8: 595497.PubMedPubMedCentralCrossRef Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol. 2020;8: 595497.PubMedPubMedCentralCrossRef
44.
go back to reference Finke D, Schanze LM, Schreiter F, et al. Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J Mol Cell Cardiol. 2022;162:119–29.PubMedCrossRef Finke D, Schanze LM, Schreiter F, et al. Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J Mol Cell Cardiol. 2022;162:119–29.PubMedCrossRef
45.
go back to reference Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Chromatin modifications remodel cardiac gene expression. Cardiovasc Res. 2014;103(1):7–16.PubMedCrossRef Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Chromatin modifications remodel cardiac gene expression. Cardiovasc Res. 2014;103(1):7–16.PubMedCrossRef
46.
go back to reference Seelbinder B, Ghosh S, Schneider SE, et al. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng. 2021;5(12):1500–16.PubMedPubMedCentralCrossRef Seelbinder B, Ghosh S, Schneider SE, et al. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng. 2021;5(12):1500–16.PubMedPubMedCentralCrossRef
47.
go back to reference Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479–88.PubMedPubMedCentralCrossRef Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479–88.PubMedPubMedCentralCrossRef
48.
go back to reference Li G, Yang Q, Yang Y, et al. Laminar shear stress alters endothelial KCa2.3 expression in H9c2 cells partially via regulating the PI3K/Akt/p300 axis. Int J Mol Med. 2019;43(3):1289–98.PubMedPubMedCentral Li G, Yang Q, Yang Y, et al. Laminar shear stress alters endothelial KCa2.3 expression in H9c2 cells partially via regulating the PI3K/Akt/p300 axis. Int J Mol Med. 2019;43(3):1289–98.PubMedPubMedCentral
49.
go back to reference Swiatlowska P, Iskratsch T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophys Rev. 2021;13(5):611–23.PubMedPubMedCentralCrossRef Swiatlowska P, Iskratsch T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophys Rev. 2021;13(5):611–23.PubMedPubMedCentralCrossRef
50.
go back to reference Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics. 2011;12:134.PubMedPubMedCentralCrossRef Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics. 2011;12:134.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018;13(5):1006–19.PubMedCrossRef Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018;13(5):1006–19.PubMedCrossRef
53.
go back to reference Verhelst S, De Clerck L, Willems S, et al. Comprehensive histone epigenetics: a mass spectrometry based screening assay to measure epigenetic toxicity. MethodsX. 2020;7: 101055.PubMedPubMedCentralCrossRef Verhelst S, De Clerck L, Willems S, et al. Comprehensive histone epigenetics: a mass spectrometry based screening assay to measure epigenetic toxicity. MethodsX. 2020;7: 101055.PubMedPubMedCentralCrossRef
54.
go back to reference Sato Y, Nakao M, Kimura H. Live-cell imaging probes to track chromatin modification dynamics. Microscopy (Oxf). 2021;70(5):415–22.PubMedCrossRef Sato Y, Nakao M, Kimura H. Live-cell imaging probes to track chromatin modification dynamics. Microscopy (Oxf). 2021;70(5):415–22.PubMedCrossRef
55.
go back to reference Lin CW, Jao CY, Ting AY. Genetically encoded fluorescent reporters of histone methylation in living cells. J Am Chem Soc. 2004;126(19):5982–3.PubMedCrossRef Lin CW, Jao CY, Ting AY. Genetically encoded fluorescent reporters of histone methylation in living cells. J Am Chem Soc. 2004;126(19):5982–3.PubMedCrossRef
56.
go back to reference Chu L, Zhu T, Liu X, et al. SUV39H1 orchestrates temporal dynamics of centromeric methylation essential for faithful chromosome segregation in mitosis. J Mol Cell Biol. 2012;4(5):331–40.PubMedPubMedCentralCrossRef Chu L, Zhu T, Liu X, et al. SUV39H1 orchestrates temporal dynamics of centromeric methylation essential for faithful chromosome segregation in mitosis. J Mol Cell Biol. 2012;4(5):331–40.PubMedPubMedCentralCrossRef
57.
go back to reference Peng Q, Lu S, Shi Y, et al. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc Natl Acad Sci U S A. 2018;115(50):E11681–90.PubMedPubMedCentralCrossRef Peng Q, Lu S, Shi Y, et al. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc Natl Acad Sci U S A. 2018;115(50):E11681–90.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Ito T, Umehara T, Sasaki K, et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol. 2011;18(4):495–507.PubMedCrossRef Ito T, Umehara T, Sasaki K, et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol. 2011;18(4):495–507.PubMedCrossRef
60.
go back to reference Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc Natl Acad Sci U S A. 2009;106(38):16257–62.PubMedPubMedCentralCrossRef Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc Natl Acad Sci U S A. 2009;106(38):16257–62.PubMedPubMedCentralCrossRef
61.
go back to reference Nakaoka S, Sasaki K, Ito A, Nakao Y, Yoshida M. A genetically encoded FRET probe to Detect intranucleosomal histone H3K9 or H3K14 acetylation using BRD4, a BET family member. ACS Chem Biol. 2016;11(3):729–33.PubMedCrossRef Nakaoka S, Sasaki K, Ito A, Nakao Y, Yoshida M. A genetically encoded FRET probe to Detect intranucleosomal histone H3K9 or H3K14 acetylation using BRD4, a BET family member. ACS Chem Biol. 2016;11(3):729–33.PubMedCrossRef
62.
go back to reference Sasaki K, Yoshida M. The exploitation of FRET probes to track bromodomain/histone interactions in cells for bromodomain inhibitors. Drug Discov Today Technol. 2016;19:51–6.PubMedCrossRef Sasaki K, Yoshida M. The exploitation of FRET probes to track bromodomain/histone interactions in cells for bromodomain inhibitors. Drug Discov Today Technol. 2016;19:51–6.PubMedCrossRef
63.
go back to reference Lin CW, Ting AY. A genetically encoded fluorescent reporter of histone phosphorylation in living cells. Angew Chem Int Ed Engl. 2004;43(22):2940–3.PubMedCrossRef Lin CW, Ting AY. A genetically encoded fluorescent reporter of histone phosphorylation in living cells. Angew Chem Int Ed Engl. 2004;43(22):2940–3.PubMedCrossRef
64.
go back to reference Raciti GA, Desiderio A, Longo M, et al. DNA methylation and type 2 diabetes: novel biomarkers for risk assessment? Int J Mol Sci. 2021;22(21):11652. Raciti GA, Desiderio A, Longo M, et al. DNA methylation and type 2 diabetes: novel biomarkers for risk assessment? Int J Mol Sci. 2021;22(21):11652.
65.
go back to reference Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: novel spotlight. J Cell Physiol. 2019;234(8):12309–24.PubMedCrossRef Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: novel spotlight. J Cell Physiol. 2019;234(8):12309–24.PubMedCrossRef
66.
go back to reference Costa-Pinheiro P, Montezuma D, Henrique R, Jeronimo C. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics. 2015;7(6):1003–15.PubMedCrossRef Costa-Pinheiro P, Montezuma D, Henrique R, Jeronimo C. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics. 2015;7(6):1003–15.PubMedCrossRef
68.
go back to reference Shukla N, Wetmore C, O’Brien MM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in Children with Relapsed or Refractory MLL-r Acute Leukemia. Blood. 2016;22(128):2780.CrossRef Shukla N, Wetmore C, O’Brien MM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in Children with Relapsed or Refractory MLL-r Acute Leukemia. Blood. 2016;22(128):2780.CrossRef
69.
go back to reference Palamaris K, Moutafi M, Gakiopoulou H, Theocharis S. Histone deacetylase (HDAC) inhibitors: a Promising weapon to tackle therapy resistance in melanoma. Int J Mol Sci. 2022;23(7):3660. Palamaris K, Moutafi M, Gakiopoulou H, Theocharis S. Histone deacetylase (HDAC) inhibitors: a Promising weapon to tackle therapy resistance in melanoma. Int J Mol Sci. 2022;23(7):3660.
70.
go back to reference Yadav R, Mishra P, Yadav D. Histone deacetylase inhibitors: a prospect in drug discovery. Turk J Pharm Sci. 2019;16(1):101–14.PubMedCrossRef Yadav R, Mishra P, Yadav D. Histone deacetylase inhibitors: a prospect in drug discovery. Turk J Pharm Sci. 2019;16(1):101–14.PubMedCrossRef
71.
go back to reference Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep. 2015;42(1):35–42.PubMedCrossRef Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep. 2015;42(1):35–42.PubMedCrossRef
72.
go back to reference Li SJ, Kao YH, Chung CC, Chen WY, Cheng WL, Chen YJ. Activated p300 acetyltransferase activity modulates aortic valvular calcification with osteogenic transdifferentiation and downregulation of Klotho. Int J Cardiol. 2017;232:271–9.PubMedCrossRef Li SJ, Kao YH, Chung CC, Chen WY, Cheng WL, Chen YJ. Activated p300 acetyltransferase activity modulates aortic valvular calcification with osteogenic transdifferentiation and downregulation of Klotho. Int J Cardiol. 2017;232:271–9.PubMedCrossRef
73.
go back to reference Tian S, Lei I, Gao W, et al. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine. 2019;39:83–94.PubMedCrossRef Tian S, Lei I, Gao W, et al. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine. 2019;39:83–94.PubMedCrossRef
74.
go back to reference Cardinale JP, Sriramula S, Pariaut R, et al. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension. 2010;56(3):437–44.PubMedCrossRef Cardinale JP, Sriramula S, Pariaut R, et al. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension. 2010;56(3):437–44.PubMedCrossRef
75.
go back to reference McKinsey TA, Foo R, Anene-Nzelu CG, et al. Emerging epigenetic therapies of cardiac fibrosis and remodeling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res. 2022;cvac142. McKinsey TA, Foo R, Anene-Nzelu CG, et al. Emerging epigenetic therapies of cardiac fibrosis and remodeling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res. 2022;cvac142.
76.
go back to reference Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 2022;132(11):e159179. Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 2022;132(11):e159179.
77.
go back to reference Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA, Jackson AL. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen. 2018;26(4):311–23.PubMedCrossRef Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA, Jackson AL. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen. 2018;26(4):311–23.PubMedCrossRef
78.
go back to reference Guay SP, Legare C, Houde AA, Mathieu P, Bosse Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenet. 2014;6(1):14.CrossRef Guay SP, Legare C, Houde AA, Mathieu P, Bosse Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenet. 2014;6(1):14.CrossRef
79.
go back to reference Deng C, Lu Q, Zhang Z, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 2002;3(48):746–56. Deng C, Lu Q, Zhang Z, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 2002;3(48):746–56.
80.
go back to reference Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.PubMedCrossRef Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.PubMedCrossRef
81.
go back to reference Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104.PubMedPubMedCentralCrossRef Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104.PubMedPubMedCentralCrossRef
82.
go back to reference Miroshnikova YA, Nava MM, Wickstrom SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci. 2017;130(14):2243–50.PubMed Miroshnikova YA, Nava MM, Wickstrom SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci. 2017;130(14):2243–50.PubMed
Metadata
Title
Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation
Authors
Pamela Swiatlowska
Thomas Iskratsch
Publication date
18-01-2023
Publisher
Springer US
Keyword
Epigenetics
Published in
Cardiovascular Drugs and Therapy / Issue 2/2024
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07422-z

Other articles of this Issue 2/2024

Cardiovascular Drugs and Therapy 2/2024 Go to the issue