Skip to main content
Top
Published in: Current Rheumatology Reports 9/2013

01-09-2013 | OSTEOARTHRITIS (MB GOLDRING, SECTION EDITOR)

Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis

Authors: Matt J. Barter, David A. Young

Published in: Current Rheumatology Reports | Issue 9/2013

Login to get access

Abstract

Osteoarthritis (OA) is a disease typified by the loss of cartilage, the normal integrity of which is maintained by the resident cell, the chondrocyte. Alterations in chondrocyte gene expression with age, injury, loading or predisposing genetics, underpin OA cartilage loss. Cell- and tissue-specific gene expression is determined by epigenetic mechanisms, including DNA methylation, chromatin modifications and non-coding RNAs, including microRNAs and long-non-coding RNAs. A number of epigenetic changes have been identified between OA and normal cartilage, and the enzymes which impart the epigenetic code are increasingly seen as important players in a number of pathologies, including OA. Here, we will describe current and potential new epigenetic studies that are likely to reveal novel aspects of chondrocyte and cartilage biology and potentially help sub-characterise OA phenotypes. Importantly, many of these epigenetic modifiers or non-coding RNAs are proposed drug targets and could represent a therapeutic opportunity for this currently untreatable disease.
Literature
1.
go back to reference Arden N, Nevitt MC. Osteoarthritis: Epidemiology. Best Pract Res Clin Rheumatol. 2006;20(1):3–25.PubMedCrossRef Arden N, Nevitt MC. Osteoarthritis: Epidemiology. Best Pract Res Clin Rheumatol. 2006;20(1):3–25.PubMedCrossRef
2.
go back to reference Loeser R. Molecular mechanisms of cartilage destruction in osteoarthritis. Biochem J. 2008;8(4):303–6. Loeser R. Molecular mechanisms of cartilage destruction in osteoarthritis. Biochem J. 2008;8(4):303–6.
3.
go back to reference Rowan AD, Litherland GJ, Hui W, Milner JM. Metalloproteases as potential therapeutic targets in arthritis treatment. Expert Opin Ther Targets. 2008;12(1):1–18.PubMedCrossRef Rowan AD, Litherland GJ, Hui W, Milner JM. Metalloproteases as potential therapeutic targets in arthritis treatment. Expert Opin Ther Targets. 2008;12(1):1–18.PubMedCrossRef
4.
go back to reference Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRef Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRef
5.
go back to reference Blackledge NP, Klose R. CpG island chromatin: A platform for gene regulation. Epigenetics. 2011;6(2):147–52.PubMedCrossRef Blackledge NP, Klose R. CpG island chromatin: A platform for gene regulation. Epigenetics. 2011;6(2):147–52.PubMedCrossRef
6.
go back to reference •• Consortium EP, Dunham I, Kundaje A. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. This is a landmark paper which defines the transcriptional landscape of the human genome.CrossRef •• Consortium EP, Dunham I, Kundaje A. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. This is a landmark paper which defines the transcriptional landscape of the human genome.CrossRef
7.
go back to reference Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.PubMedCrossRef Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.PubMedCrossRef
8.
9.
go back to reference Sesselmann S, Soder S, Voigt R, et al. DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthr Cartil. 2009;17(4):507–12.PubMedCrossRef Sesselmann S, Soder S, Voigt R, et al. DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthr Cartil. 2009;17(4):507–12.PubMedCrossRef
10.
go back to reference Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil. 2012;20(5):339–49.PubMedCrossRef Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil. 2012;20(5):339–49.PubMedCrossRef
11.
go back to reference Poschl E, Fidler A, Schmidt B, et al. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann Rheum Dis. 2005;64(3):477–80.PubMedCrossRef Poschl E, Fidler A, Schmidt B, et al. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann Rheum Dis. 2005;64(3):477–80.PubMedCrossRef
12.
go back to reference Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 2008;58(9):2743–53.PubMedCrossRef Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 2008;58(9):2743–53.PubMedCrossRef
13.
go back to reference Kim, KI, YS Park, GI Im. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res, 2012 Kim, KI, YS Park, GI Im. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res, 2012
14.
go back to reference Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005;52(10):3110–24.PubMedCrossRef Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005;52(10):3110–24.PubMedCrossRef
15.
go back to reference • Bui C, Barter MJ, Scott JL, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012;26(7):3000–11. This paper is the first to detail how a CpG change in osteoarthritis can impact on expression of the important collagenase MMP13.PubMedCrossRef • Bui C, Barter MJ, Scott JL, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012;26(7):3000–11. This paper is the first to detail how a CpG change in osteoarthritis can impact on expression of the important collagenase MMP13.PubMedCrossRef
16.
go back to reference Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013;288(14):10061–72.PubMedCrossRef Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013;288(14):10061–72.PubMedCrossRef
17.
go back to reference de Andres, MC, K Imagawa, K Hashimoto, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of iNOS is responsible for gene induction in human articular chondrocytes. Arthritis Rheum, 2012. de Andres, MC, K Imagawa, K Hashimoto, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of iNOS is responsible for gene induction in human articular chondrocytes. Arthritis Rheum, 2012.
18.
go back to reference Hashimoto K, Oreffo RO, Gibson MB, et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009;60(11):3303–13.PubMedCrossRef Hashimoto K, Oreffo RO, Gibson MB, et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009;60(11):3303–13.PubMedCrossRef
19.
go back to reference Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616–21.PubMedCrossRef Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616–21.PubMedCrossRef
20.
go back to reference Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65(1):197–205.PubMedCrossRef Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65(1):197–205.PubMedCrossRef
21.
go back to reference • Reynard LN, Bui C, Canty-Laird EG, et al. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20(17):3450–60. The paper links DNA methylation to differential allelic expression of an important OA-associated gene.PubMedCrossRef • Reynard LN, Bui C, Canty-Laird EG, et al. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20(17):3450–60. The paper links DNA methylation to differential allelic expression of an important OA-associated gene.PubMedCrossRef
22.
go back to reference Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedCrossRef Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedCrossRef
23.
go back to reference Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell. 2006;23(3):289–96.PubMedCrossRef Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell. 2006;23(3):289–96.PubMedCrossRef
24.
25.
go back to reference Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.PubMedCrossRef Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.PubMedCrossRef
26.
go back to reference Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011–8.PubMedCrossRef Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011–8.PubMedCrossRef
27.
28.
go back to reference Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.PubMedCrossRef Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.PubMedCrossRef
29.
go back to reference Huber LC, Brock M, Hemmatazad H, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56(4):1087–93.PubMedCrossRef Huber LC, Brock M, Hemmatazad H, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56(4):1087–93.PubMedCrossRef
30.
go back to reference Higashiyama R, Miyaki S, Yamashita S, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 2010;20(1):11–7.PubMedCrossRef Higashiyama R, Miyaki S, Yamashita S, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 2010;20(1):11–7.PubMedCrossRef
31.
go back to reference Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23(10):3539–52.PubMedCrossRef Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23(10):3539–52.PubMedCrossRef
32.
go back to reference Chen WP, Bao JP, Hu PF, et al. Alleviation of osteoarthritis by trichostatin a, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep. 2010;37(8):3967–72.PubMedCrossRef Chen WP, Bao JP, Hu PF, et al. Alleviation of osteoarthritis by trichostatin a, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep. 2010;37(8):3967–72.PubMedCrossRef
33.
go back to reference Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 2003;8(5):707–17.PubMedCrossRef Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 2003;8(5):707–17.PubMedCrossRef
34.
go back to reference Lin HS, Hu CY, Chan HY, et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150(7):862–72.PubMedCrossRef Lin HS, Hu CY, Chan HY, et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150(7):862–72.PubMedCrossRef
35.
go back to reference Nishida K, Komiyama T, Miyazawa S, et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 2004;50(10):3365–76.PubMedCrossRef Nishida K, Komiyama T, Miyazawa S, et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 2004;50(10):3365–76.PubMedCrossRef
36.
go back to reference Chabane N, Zayed N, Afif H, et al. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthr Cartil. 2008;16(10):1267–74.PubMedCrossRef Chabane N, Zayed N, Afif H, et al. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthr Cartil. 2008;16(10):1267–74.PubMedCrossRef
37.
go back to reference Young DA, Lakey RL, Pennington CJ, et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther. 2005;7(3):R503–12.PubMedCrossRef Young DA, Lakey RL, Pennington CJ, et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther. 2005;7(3):R503–12.PubMedCrossRef
38.
go back to reference Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 2009;27(1):40–9.PubMedCrossRef Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 2009;27(1):40–9.PubMedCrossRef
39.
go back to reference Furumatsu T, Tsuda M, Yoshida K, et al. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem. 2005;280(42):35203–8.PubMedCrossRef Furumatsu T, Tsuda M, Yoshida K, et al. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem. 2005;280(42):35203–8.PubMedCrossRef
40.
go back to reference Huh YH, Ryu JH, Chun JS. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem. 2007;282(23):17123–31.PubMedCrossRef Huh YH, Ryu JH, Chun JS. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem. 2007;282(23):17123–31.PubMedCrossRef
41.
go back to reference Zayed N, El Mansouri FE, Chabane N, et al. Valproic acid suppresses interleukin-1ss-induced microsomal prostaglandin E2 synthase-1 expression in chondrocytes through upregulation of NAB1. J Rheumatol. 2011;38(3):492–502.PubMedCrossRef Zayed N, El Mansouri FE, Chabane N, et al. Valproic acid suppresses interleukin-1ss-induced microsomal prostaglandin E2 synthase-1 expression in chondrocytes through upregulation of NAB1. J Rheumatol. 2011;38(3):492–502.PubMedCrossRef
42.
go back to reference Saito T, Nishida K, Furumatsu T, et al. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74.PubMedCrossRef Saito T, Nishida K, Furumatsu T, et al. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74.PubMedCrossRef
43.
go back to reference Gagarina V, Gabay O, Dvir-Ginzberg M, et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 2010;62(5):1383–92.PubMedCrossRef Gagarina V, Gabay O, Dvir-Ginzberg M, et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 2010;62(5):1383–92.PubMedCrossRef
44.
go back to reference Hong EH, Lee SJ, Kim JS, et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem. 2010;285(2):1283–95.PubMedCrossRef Hong EH, Lee SJ, Kim JS, et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem. 2010;285(2):1283–95.PubMedCrossRef
45.
go back to reference Takayama K, Ishida K, Matsushita T, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–40.PubMedCrossRef Takayama K, Ishida K, Matsushita T, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–40.PubMedCrossRef
46.
go back to reference Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10.PubMedCrossRef Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10.PubMedCrossRef
47.
go back to reference Fujita N, Matsushita T, Ishida K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–5.PubMedCrossRef Fujita N, Matsushita T, Ishida K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–5.PubMedCrossRef
48.
go back to reference • Gabay O, Oppenhiemer H, Meir H, et al. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis. 2012;71(4):613–6. SirT1 has been linked to chondrocyte function; here, the authors confirm a role of SirT1 in regulating chondrocyte apoptosis in vivo.PubMedCrossRef • Gabay O, Oppenhiemer H, Meir H, et al. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis. 2012;71(4):613–6. SirT1 has been linked to chondrocyte function; here, the authors confirm a role of SirT1 in regulating chondrocyte apoptosis in vivo.PubMedCrossRef
49.
go back to reference Lei M, Wang JG, Xiao DM, et al. Resveratrol inhibits interleukin 1beta-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-kappaB activity. Eur J Pharmacol. 2012;674(2–3):73–9.PubMedCrossRef Lei M, Wang JG, Xiao DM, et al. Resveratrol inhibits interleukin 1beta-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-kappaB activity. Eur J Pharmacol. 2012;674(2–3):73–9.PubMedCrossRef
50.
go back to reference Matsushita, T, H Sasaki, K Takayama, et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J Orthop Res, 2012. Matsushita, T, H Sasaki, K Takayama, et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J Orthop Res, 2012.
51.
go back to reference Moon, MH, JK Jeong, YJ Lee, et al. SIRT1, a class III histone deacetylase, regulates TNF-alpha-induced inflammation in human chondrocytes. Osteoarthritis Cartilage, 2012. Moon, MH, JK Jeong, YJ Lee, et al. SIRT1, a class III histone deacetylase, regulates TNF-alpha-induced inflammation in human chondrocytes. Osteoarthritis Cartilage, 2012.
52.
go back to reference El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 2011;63(1):168–79.PubMedCrossRef El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 2011;63(1):168–79.PubMedCrossRef
53.
go back to reference • Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(21):8218–23. This study is the first to provide a direct link between an histone methyltransferase and hip osteoarthritis.PubMedCrossRef • Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(21):8218–23. This study is the first to provide a direct link between an histone methyltransferase and hip osteoarthritis.PubMedCrossRef
54.
55.
go back to reference Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.PubMedCrossRef Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.PubMedCrossRef
56.
go back to reference • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. This paper, which is part of ENCODE, defines and catalogues long non-coding RNAs in humans.PubMedCrossRef • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. This paper, which is part of ENCODE, defines and catalogues long non-coding RNAs in humans.PubMedCrossRef
57.
go back to reference Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110.PubMedCrossRef Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110.PubMedCrossRef
58.
go back to reference Czech B, Hannon GJ. Small RNA sorting: Matchmaking for argonautes. Nat Rev Genet. 2010;12(1):19–31.PubMedCrossRef Czech B, Hannon GJ. Small RNA sorting: Matchmaking for argonautes. Nat Rev Genet. 2010;12(1):19–31.PubMedCrossRef
59.
go back to reference Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.PubMedCrossRef Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.PubMedCrossRef
60.
go back to reference Chi SW, GJ Hannon RB. Darnell, An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321–7.PubMedCrossRef Chi SW, GJ Hannon RB. Darnell, An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321–7.PubMedCrossRef
61.
go back to reference Neilsen CT, Goodall GJ, Bracken CP. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28(11):544–9.PubMedCrossRef Neilsen CT, Goodall GJ, Bracken CP. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28(11):544–9.PubMedCrossRef
62.
63.
go back to reference Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.PubMedCrossRef Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.PubMedCrossRef
64.
go back to reference Pasquinelli AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMed Pasquinelli AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMed
65.
go back to reference Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.PubMedCrossRef Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.PubMedCrossRef
66.
go back to reference Guil S, Esteller M. Cis-acting noncoding RNAs: Friends and foes. Nat Struct Mol Biol. 2012;19(11):1068–75.PubMedCrossRef Guil S, Esteller M. Cis-acting noncoding RNAs: Friends and foes. Nat Struct Mol Biol. 2012;19(11):1068–75.PubMedCrossRef
67.
68.
go back to reference Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem. 2010;285(32):24381–7.PubMedCrossRef Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem. 2010;285(32):24381–7.PubMedCrossRef
69.
go back to reference Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil. 2009;17(4):464–72.PubMedCrossRef Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil. 2009;17(4):464–72.PubMedCrossRef
70.
go back to reference Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3(11):e3740.PubMedCrossRef Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3(11):e3740.PubMedCrossRef
71.
go back to reference Diaz-Prado S, Cicione C, Muinos-Lopez E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012;13:144.PubMedCrossRef Diaz-Prado S, Cicione C, Muinos-Lopez E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012;13:144.PubMedCrossRef
72.
go back to reference Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284–92.PubMedCrossRef Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284–92.PubMedCrossRef
73.
go back to reference Wang Y, Jiang XL, Yang SC, et al. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials. 2011;32(35):9207–17.PubMedCrossRef Wang Y, Jiang XL, Yang SC, et al. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials. 2011;32(35):9207–17.PubMedCrossRef
74.
go back to reference Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14(2):R75.PubMedCrossRef Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14(2):R75.PubMedCrossRef
75.
go back to reference Lin, L, Q Shen, C Zhang, et al. Assessment of the profiling MicroRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J Orthop Res, 2011. Lin, L, Q Shen, C Zhang, et al. Assessment of the profiling MicroRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J Orthop Res, 2011.
76.
go back to reference Murata K, Yoshitomi H, Tanida S, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12(3):R86.PubMedCrossRef Murata K, Yoshitomi H, Tanida S, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12(3):R86.PubMedCrossRef
77.
go back to reference Yamasaki K, Nakasa T, Miyaki S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60(4):1035–41.PubMedCrossRef Yamasaki K, Nakasa T, Miyaki S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60(4):1035–41.PubMedCrossRef
78.
go back to reference Okuhara, A, T Nakasa, H Shibuya, et al. Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod Rheumatol, 2011. Okuhara, A, T Nakasa, H Shibuya, et al. Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod Rheumatol, 2011.
79.
go back to reference Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60(9):2723–30.PubMedCrossRef Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60(9):2723–30.PubMedCrossRef
80.
go back to reference •• Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24(11):1173–85. The first paper to show that a single miR, miR-140, could regulate skeletal development and OA onset.PubMedCrossRef •• Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24(11):1173–85. The first paper to show that a single miR, miR-140, could regulate skeletal development and OA onset.PubMedCrossRef
81.
go back to reference Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31(14):3019–28.PubMedCrossRef Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31(14):3019–28.PubMedCrossRef
82.
go back to reference Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580(17):4214–7.PubMedCrossRef Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580(17):4214–7.PubMedCrossRef
83.
go back to reference Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1.PubMedCrossRef Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1.PubMedCrossRef
84.
go back to reference Swingler, TE, G Wheeler, V Carmont, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2011. Swingler, TE, G Wheeler, V Carmont, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2011.
85.
go back to reference Buechli, ME, J Lamarre, TG Koch. MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev, 2012 Buechli, ME, J Lamarre, TG Koch. MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev, 2012
86.
go back to reference Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287(26):22206–15.PubMedCrossRef Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287(26):22206–15.PubMedCrossRef
87.
go back to reference Nakamura Y, He X, Kato H, et al. Sox9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 2011;166(1):64–71.PubMedCrossRef Nakamura Y, He X, Kato H, et al. Sox9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 2011;166(1):64–71.PubMedCrossRef
88.
go back to reference Yang J, Qin S, Yi C, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585(19):2992–7.PubMedCrossRef Yang J, Qin S, Yi C, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585(19):2992–7.PubMedCrossRef
89.
go back to reference He X, Yan YL, Delaurier A, Postlethwait JH. Observation of miRNA Gene Expression in Zebrafish Embryos by In Situ Hybridization to MicroRNA Primary Transcripts. Zebrafish. 2011;8(1):1–8.PubMedCrossRef He X, Yan YL, Delaurier A, Postlethwait JH. Observation of miRNA Gene Expression in Zebrafish Embryos by In Situ Hybridization to MicroRNA Primary Transcripts. Zebrafish. 2011;8(1):1–8.PubMedCrossRef
90.
go back to reference Pando R, Even-Zohar N, Shtaif B, et al. MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem. 2012;23(11):1474–81.PubMedCrossRef Pando R, Even-Zohar N, Shtaif B, et al. MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem. 2012;23(11):1474–81.PubMedCrossRef
91.
go back to reference van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 2012;347(1):257–65.PubMedCrossRef van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 2012;347(1):257–65.PubMedCrossRef
92.
go back to reference Li N, Cui J, Duan X, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Invest Ophthalmol Vis Sci. 2012;53(3):1670–8.PubMedCrossRef Li N, Cui J, Duan X, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Invest Ophthalmol Vis Sci. 2012;53(3):1670–8.PubMedCrossRef
93.
go back to reference Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284(23):15676–84.PubMedCrossRef Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284(23):15676–84.PubMedCrossRef
94.
go back to reference Yan C, Wang Y, Shen XY, et al. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials. 2011;32(27):6435–44.PubMedCrossRef Yan C, Wang Y, Shen XY, et al. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials. 2011;32(27):6435–44.PubMedCrossRef
95.
go back to reference Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 2012;90(10):1185–95.CrossRef Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 2012;90(10):1185–95.CrossRef
96.
go back to reference Dai L, Zhang X, Hu X, et al. Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 2012;14(6):R268.PubMedCrossRef Dai L, Zhang X, Hu X, et al. Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 2012;14(6):R268.PubMedCrossRef
97.
go back to reference Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 2012;7(3):e31861.PubMedCrossRef Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 2012;7(3):e31861.PubMedCrossRef
98.
go back to reference Song, J, M Lee, D Kim, et al. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun, 2013. Song, J, M Lee, D Kim, et al. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun, 2013.
99.
go back to reference Abouheif MM, Nakasa T, Shibuya H, et al. Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 2010;49(11):2054–60.CrossRef Abouheif MM, Nakasa T, Shibuya H, et al. Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 2010;49(11):2054–60.CrossRef
100.
go back to reference Kim, D, J Song, S Kim, et al. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 crosstalk in chondroblasts. J Biol Chem, 2012. Kim, D, J Song, S Kim, et al. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 crosstalk in chondroblasts. J Biol Chem, 2012.
101.
go back to reference Akhtar, N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis, 2012. Akhtar, N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis, 2012.
102.
go back to reference Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62(5):1361–71.PubMedCrossRef Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62(5):1361–71.PubMedCrossRef
103.
go back to reference Zhang L, Yang M, Marks P, et al. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthr Cartil. 2012;20(12):1631–7.PubMedCrossRef Zhang L, Yang M, Marks P, et al. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthr Cartil. 2012;20(12):1631–7.PubMedCrossRef
104.
go back to reference •• Maass PG, Rump A, Schulz H, et al. A misplaced lncRNA causes brachydactyly in humans. J Clin Invest. 2012;122(11):3990–4002. The first paper to demonstrate that a lncRNA could be important for skeletal development.PubMedCrossRef •• Maass PG, Rump A, Schulz H, et al. A misplaced lncRNA causes brachydactyly in humans. J Clin Invest. 2012;122(11):3990–4002. The first paper to demonstrate that a lncRNA could be important for skeletal development.PubMedCrossRef
105.
go back to reference Xu Y, Barter MJ, Swan DC, et al. Comparison of osteoarthritis and normal hip cartilage transcriptomes using RNA-seq reveals new candidate gene targets and associated pathways. Osteoarthr Cartil. 2012;20(1):S43.CrossRef Xu Y, Barter MJ, Swan DC, et al. Comparison of osteoarthritis and normal hip cartilage transcriptomes using RNA-seq reveals new candidate gene targets and associated pathways. Osteoarthr Cartil. 2012;20(1):S43.CrossRef
106.
go back to reference • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. A paper which redefines how miR circulate in the bloodstream.PubMedCrossRef • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. A paper which redefines how miR circulate in the bloodstream.PubMedCrossRef
107.
go back to reference Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedCrossRef Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedCrossRef
108.
go back to reference • de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613. Identification of genes and epigenetic marks involved in osteoarthritis is important and this paper describes mechanisms in which those marks can be modulated to control gene expression.PubMedCrossRef • de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613. Identification of genes and epigenetic marks involved in osteoarthritis is important and this paper describes mechanisms in which those marks can be modulated to control gene expression.PubMedCrossRef
Metadata
Title
Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis
Authors
Matt J. Barter
David A. Young
Publication date
01-09-2013
Publisher
Springer US
Published in
Current Rheumatology Reports / Issue 9/2013
Print ISSN: 1523-3774
Electronic ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-013-0353-z

Other articles of this Issue 9/2013

Current Rheumatology Reports 9/2013 Go to the issue

SYSTEMIC LUPUS ERYTHEMATOSUS (M PETRI, SECTION EDITOR)

Genetics and Epigenetics of Systemic Lupus Erythematosus

SYSTEMIC LUPUS ERYTHEMATOSUS (M PETRI, SECTION EDITOR)

Top 10 Developments in Lupus Nephritis

RHEUMATOID ARTHRITIS (LW MORELAND, SECTION EDITOR)

Treg Cells in Rheumatoid Arthritis: An Update

SERONEGATIVE ARTHRITIS (MA KHAN, SECTION EDITOR)

Epidemiology of Spondyloarthritis: A Review

SYSTEMIC LUPUS ERYTHEMATOSUS (M PETRI, SECTION EDITOR)

2013 Update: Hopkins Lupus Cohort

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.