Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2010

Open Access 01-12-2010 | Research article

Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats

Authors: Cheng-Shyuan Rau, Jonathan Chris Jeng, Seng-Feng Jeng, Tsu-Hsiang Lu, Yi-Chun Chen, Po-Chou Liliang, Chia-Jung Wu, Chia-Jung Lin, Ching-Hua Hsieh

Published in: BMC Musculoskeletal Disorders | Issue 1/2010

Login to get access

Abstract

Background

To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.

Methods

The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).

Results

In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.

Conclusions

This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pham K, Gupta R: Understanding the mechanisms of entrapment neuropathies. Review article. Neurosurg Focus. 2009, 26: E7-10.3171/FOC.2009.26.2.E7.CrossRefPubMed Pham K, Gupta R: Understanding the mechanisms of entrapment neuropathies. Review article. Neurosurg Focus. 2009, 26: E7-10.3171/FOC.2009.26.2.E7.CrossRefPubMed
2.
go back to reference Mackinnon SE: Pathophysiology of nerve compression. Hand Clin. 2002, 18: 231-241. 10.1016/S0749-0712(01)00012-9.CrossRefPubMed Mackinnon SE: Pathophysiology of nerve compression. Hand Clin. 2002, 18: 231-241. 10.1016/S0749-0712(01)00012-9.CrossRefPubMed
3.
go back to reference Maggi SP, Lowe JB, Mackinnon SE: Pathophysiology of nerve injury. Clin Plast Surg. 2003, 30: 109-126. 10.1016/S0094-1298(02)00101-3.CrossRefPubMed Maggi SP, Lowe JB, Mackinnon SE: Pathophysiology of nerve injury. Clin Plast Surg. 2003, 30: 109-126. 10.1016/S0094-1298(02)00101-3.CrossRefPubMed
4.
go back to reference Friedman AH, Elias WJ, Midha R: Introduction: peripheral nerve surgery--biology, entrapment, and injuries. Neurosurg Focus. 2009, 26: E1-10.3171/FOC.2009.26.2.E1.CrossRefPubMed Friedman AH, Elias WJ, Midha R: Introduction: peripheral nerve surgery--biology, entrapment, and injuries. Neurosurg Focus. 2009, 26: E1-10.3171/FOC.2009.26.2.E1.CrossRefPubMed
5.
6.
go back to reference Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11: 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11: 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed
7.
go back to reference Zhao Y, Srivastava D: A developmental view of micro-RNA function. Trends Biochem Sci. 2007, 2: 189-197. 10.1016/j.tibs.2007.02.006.CrossRef Zhao Y, Srivastava D: A developmental view of micro-RNA function. Trends Biochem Sci. 2007, 2: 189-197. 10.1016/j.tibs.2007.02.006.CrossRef
8.
10.
go back to reference Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 2006, 25: 6176-6187. 10.1038/sj.onc.1209912.CrossRefPubMed Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 2006, 25: 6176-6187. 10.1038/sj.onc.1209912.CrossRefPubMed
11.
go back to reference Jeyaseelan K, Lim KY, Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008, 39: 959-966. 10.1161/STROKEAHA.107.500736.CrossRefPubMed Jeyaseelan K, Lim KY, Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008, 39: 959-966. 10.1161/STROKEAHA.107.500736.CrossRefPubMed
12.
go back to reference Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007, 23: 243-249. 10.1016/j.tig.2007.02.011.CrossRefPubMed Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007, 23: 243-249. 10.1016/j.tig.2007.02.011.CrossRefPubMed
13.
go back to reference Pillai RS, Bhattacharyya SN, Filipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 2007, 17: 118-126. 10.1016/j.tcb.2006.12.007.CrossRefPubMed Pillai RS, Bhattacharyya SN, Filipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 2007, 17: 118-126. 10.1016/j.tcb.2006.12.007.CrossRefPubMed
14.
go back to reference Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007, 42: 1137-1141. 10.1016/j.yjmcc.2007.04.004.CrossRefPubMedPubMedCentral Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007, 42: 1137-1141. 10.1016/j.yjmcc.2007.04.004.CrossRefPubMedPubMedCentral
15.
go back to reference van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006, 103: 18255-18260. 10.1073/pnas.0608791103.CrossRefPubMedPubMedCentral van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006, 103: 18255-18260. 10.1073/pnas.0608791103.CrossRefPubMedPubMedCentral
16.
go back to reference Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007, 104: 17016-17021. 10.1073/pnas.0708115104.CrossRefPubMedPubMedCentral Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007, 104: 17016-17021. 10.1073/pnas.0708115104.CrossRefPubMedPubMedCentral
17.
go back to reference Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8: 1833-1837.CrossRefPubMed Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8: 1833-1837.CrossRefPubMed
18.
go back to reference Callis TE, Chen JF, Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26: 219-225. 10.1089/dna.2006.0556.CrossRefPubMed Callis TE, Chen JF, Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26: 219-225. 10.1089/dna.2006.0556.CrossRefPubMed
19.
go back to reference Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8: 1833-1837.CrossRefPubMed Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8: 1833-1837.CrossRefPubMed
20.
go back to reference John McCarthy: MicroRNA-206: The skeletal muscle-specific myomiR. Biochim Biophys Acta. 2008, 1779: 682-691.CrossRef John McCarthy: MicroRNA-206: The skeletal muscle-specific myomiR. Biochim Biophys Acta. 2008, 1779: 682-691.CrossRef
21.
go back to reference Potthoff MJ, Olson EN, Bassel-Duby R: Skeletal muscle remodeling. Curr Opin Rheumatol. 2007, 19: 542-549. 10.1097/BOR.0b013e3282efb761.CrossRefPubMed Potthoff MJ, Olson EN, Bassel-Duby R: Skeletal muscle remodeling. Curr Opin Rheumatol. 2007, 19: 542-549. 10.1097/BOR.0b013e3282efb761.CrossRefPubMed
22.
go back to reference Jeng SF, Rau CS, Liliang PC, Wu CJ, Lu TH, Chen YC, Lin CJ, Hsieh CH: Profiling muscle-specific microRNA expression after peripheral denervation and reinnervation in a rat model. J Neurotrauma. 2009, 26: 2345-2353. 10.1089/neu.2009.0960.CrossRefPubMed Jeng SF, Rau CS, Liliang PC, Wu CJ, Lu TH, Chen YC, Lin CJ, Hsieh CH: Profiling muscle-specific microRNA expression after peripheral denervation and reinnervation in a rat model. J Neurotrauma. 2009, 26: 2345-2353. 10.1089/neu.2009.0960.CrossRefPubMed
23.
go back to reference Yuasa K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T: MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct. 2008, 33: 163-169. 10.1247/csf.08022.CrossRefPubMed Yuasa K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T: MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct. 2008, 33: 163-169. 10.1247/csf.08022.CrossRefPubMed
24.
go back to reference Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009, 326: 1549-1554. 10.1126/science.1181046.CrossRefPubMedPubMedCentral Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009, 326: 1549-1554. 10.1126/science.1181046.CrossRefPubMedPubMedCentral
25.
go back to reference Hsieh CH, Jeng SF, Lu TH, Chen YC, Hsieh MW, Chen SS: Loss of small fibers in entrapment neuropathy and their regeneration after surgical decompression in a rat model. J Neurotrauma. 2007, 24: 1658-1666. 10.1089/neu.2007.0279.CrossRefPubMed Hsieh CH, Jeng SF, Lu TH, Chen YC, Hsieh MW, Chen SS: Loss of small fibers in entrapment neuropathy and their regeneration after surgical decompression in a rat model. J Neurotrauma. 2007, 24: 1658-1666. 10.1089/neu.2007.0279.CrossRefPubMed
26.
go back to reference Chen CC, Jeng SF, Yang JC, Hsieh CH: Surgical decompression improves recovery of myopathy in entrapment neuropathy. J Plast Surg Assoc ROC. 2008, 17: 325-335. Chen CC, Jeng SF, Yang JC, Hsieh CH: Surgical decompression improves recovery of myopathy in entrapment neuropathy. J Plast Surg Assoc ROC. 2008, 17: 325-335.
27.
go back to reference Maggi SP, Lowe JB, Mackinnon SE: Pathophysiology of nerve injury. Clin Plast Surg. 2003, 30: 109-126. 10.1016/S0094-1298(02)00101-3.CrossRefPubMed Maggi SP, Lowe JB, Mackinnon SE: Pathophysiology of nerve injury. Clin Plast Surg. 2003, 30: 109-126. 10.1016/S0094-1298(02)00101-3.CrossRefPubMed
28.
go back to reference Mackinnon SE: Pathophysiology of nerve compression. Hand Clin. 2002, 18: 231-241. 10.1016/S0749-0712(01)00012-9.CrossRefPubMed Mackinnon SE: Pathophysiology of nerve compression. Hand Clin. 2002, 18: 231-241. 10.1016/S0749-0712(01)00012-9.CrossRefPubMed
29.
go back to reference Mozaffar T, Strandberg E, Abe K, Hilgenberg LG, Smith MA, Gupta R: Neuromuscular junction integrity after chronic nerve compression injury. J Orthop Res J Orthop Res. 2009, 27: 114-119.CrossRefPubMed Mozaffar T, Strandberg E, Abe K, Hilgenberg LG, Smith MA, Gupta R: Neuromuscular junction integrity after chronic nerve compression injury. J Orthop Res J Orthop Res. 2009, 27: 114-119.CrossRefPubMed
30.
go back to reference Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433: 769-773. 10.1038/nature03315.CrossRefPubMed Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433: 769-773. 10.1038/nature03315.CrossRefPubMed
31.
32.
go back to reference Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 2008, 455: 58-63. 10.1038/nature07228.CrossRefPubMed Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 2008, 455: 58-63. 10.1038/nature07228.CrossRefPubMed
33.
go back to reference Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF: Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA. 2006, 103: 8721-8726. 10.1073/pnas.0602831103.CrossRefPubMedPubMedCentral Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF: Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA. 2006, 103: 8721-8726. 10.1073/pnas.0602831103.CrossRefPubMedPubMedCentral
34.
go back to reference McCarthy JJ, Esser KA, Andrade FH: MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol. 2007, 293: C451-C457. 10.1152/ajpcell.00077.2007.CrossRefPubMed McCarthy JJ, Esser KA, Andrade FH: MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol. 2007, 293: C451-C457. 10.1152/ajpcell.00077.2007.CrossRefPubMed
35.
go back to reference Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009, 326: 1549-1554. 10.1126/science.1181046.CrossRefPubMedPubMedCentral Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009, 326: 1549-1554. 10.1126/science.1181046.CrossRefPubMedPubMedCentral
36.
go back to reference Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH: MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010, Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH: MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010,
37.
go back to reference Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65: 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65: 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed
38.
go back to reference Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed
39.
go back to reference Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C: MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009, 47: 5-14. 10.1016/j.yjmcc.2009.01.008.CrossRefPubMedPubMedCentral Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C: MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009, 47: 5-14. 10.1016/j.yjmcc.2009.01.008.CrossRefPubMedPubMedCentral
40.
go back to reference Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, 284: 29514-29525. 10.1074/jbc.M109.027896.CrossRefPubMedPubMedCentral Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, 284: 29514-29525. 10.1074/jbc.M109.027896.CrossRefPubMedPubMedCentral
41.
go back to reference Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010, 16: 991-1006. 10.1261/rna.1947110.CrossRefPubMedPubMedCentral Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010, 16: 991-1006. 10.1261/rna.1947110.CrossRefPubMedPubMedCentral
42.
go back to reference Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006, 3: 881-886. 10.1038/nmeth954.CrossRefPubMed Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006, 3: 881-886. 10.1038/nmeth954.CrossRefPubMed
43.
go back to reference John B, Sander C, Marks DS: Prediction of human microRNA targets. Methods Mol Biol. 2006, 342: 101-113.PubMed John B, Sander C, Marks DS: Prediction of human microRNA targets. Methods Mol Biol. 2006, 342: 101-113.PubMed
Metadata
Title
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats
Authors
Cheng-Shyuan Rau
Jonathan Chris Jeng
Seng-Feng Jeng
Tsu-Hsiang Lu
Yi-Chun Chen
Po-Chou Liliang
Chia-Jung Wu
Chia-Jung Lin
Ching-Hua Hsieh
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2010
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-11-181

Other articles of this Issue 1/2010

BMC Musculoskeletal Disorders 1/2010 Go to the issue