Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2010

Open Access 01-12-2010 | Research article

MicroRNA profiling in ischemic injury of the gracilis muscle in rats

Authors: Ching-Hua Hsieh, Jonathan Chris Jeng, Seng-Feng Jeng, Chia-Jung Wu, Tsu-Hsiang Lu, Po-Chou Liliang, Cheng-Shyuan Rau, Yi-Chun Chen, Chia-Jung Lin

Published in: BMC Musculoskeletal Disorders | Issue 1/2010

Login to get access

Abstract

Background

To profile the expression of microRNAs (miRNAs) and their potential target genes in the gracilis muscles following ischemic injury in rats by monitoring miRNA and mRNA expression on a genome-wide basis.

Methods

Following 4 h of ischemia and subsequent reperfusion for 4 h of the gracilis muscles, the specimens were analyzed with an Agilent rat miRNA array to detect the expressed miRNAs in the experimental muscles compared to those from the sham-operated controls. Their expressions were subsequently quantified by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to determine their expression pattern after different durations of ischemia and reperfusion. In addition, the expression of the mRNA in the muscle specimens after 4 h of ischemia and reperfusion for 1, 3, 7, and 14 d were detected with the Agilent Whole Rat Genome 4 × 44 k oligo microarray. A combined approach using a computational prediction algorithm that included miRanda, PicTar, TargetScanS, MirTarget2, RNAhybrid, and the whole genome microarray experiment was performed by monitoring the mRNA:miRNA association to identify potential target genes.

Results

Three miRNAs (miR-21, miR-200c, and miR-205) of 350 tested rat miRNAs were found to have an increased expression in the miRNA array. Real-time RT-PCR demonstrated that, with 2-fold increase after 4 h of ischemia, a maximum 24-fold increase at 7 d, and a 7.5-fold increase at 14 d after reperfusion, only the miR-21, but not the miR-200c or miR-205 was upregulated throughout the experimental time. In monitoring the target genes of miR-21 in the expression array at 1, 3, 7, 14 d after reperfusion, with persistent expression throughout the experiment, we detected the same 4 persistently downregulated target genes (Nqo1, Pdpn, CXCL3, and Rad23b) with the prediction algorithms miRanda and RNAhybrid, but no target gene was revealed with PicTar, TargetScanS, and MirTarget2.

Conclusions

This study revealed 3 upregulated miRNAs in the gracilis muscle following ischemic injury and identified 4 potential target genes of miR-21 by examining miRNAs and mRNAs expression patterns in a time-course fashion using a combined approach with prediction algorithms and a whole genome expression array experiment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lyden SP, Shortell CK, Illig KA: Reperfusion and compartment syndromes: strategies for prevention and treatment. Semin Vasc Surg. 2001, 4 (2): 107-113. 10.1053/svas.2001.23166.CrossRef Lyden SP, Shortell CK, Illig KA: Reperfusion and compartment syndromes: strategies for prevention and treatment. Semin Vasc Surg. 2001, 4 (2): 107-113. 10.1053/svas.2001.23166.CrossRef
2.
go back to reference Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11 (4): 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11 (4): 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed
3.
go back to reference Zhao Y, Srivastava D: A developmental view of micro-RNA function. Trends Biochem Sci. 2007, 2 (4): 189-197. 10.1016/j.tibs.2007.02.006.CrossRef Zhao Y, Srivastava D: A developmental view of micro-RNA function. Trends Biochem Sci. 2007, 2 (4): 189-197. 10.1016/j.tibs.2007.02.006.CrossRef
4.
go back to reference Ambros V: The functions of animal microRNAs. Nature. 2004, 431 (7006): 350-355. 10.1038/nature02871.CrossRefPubMed Ambros V: The functions of animal microRNAs. Nature. 2004, 431 (7006): 350-355. 10.1038/nature02871.CrossRefPubMed
5.
6.
go back to reference Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 2006, 25 (46): 6176-6187. 10.1038/sj.onc.1209912.CrossRefPubMed Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 2006, 25 (46): 6176-6187. 10.1038/sj.onc.1209912.CrossRefPubMed
7.
go back to reference Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.CrossRefPubMed Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.CrossRefPubMed
8.
9.
10.
go back to reference Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115 (7): 787-798. 10.1016/S0092-8674(03)01018-3.CrossRefPubMed Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115 (7): 787-798. 10.1016/S0092-8674(03)01018-3.CrossRefPubMed
11.
go back to reference Meister G, Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 2004, 431 (7006): 343-349. 10.1038/nature02873.CrossRefPubMed Meister G, Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 2004, 431 (7006): 343-349. 10.1038/nature02873.CrossRefPubMed
12.
go back to reference Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007, 23 (5): 243-249. 10.1016/j.tig.2007.02.011.CrossRefPubMed Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007, 23 (5): 243-249. 10.1016/j.tig.2007.02.011.CrossRefPubMed
13.
go back to reference Pillai RS, Bhattacharyya SN, Filipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 2007, 17 (3): 118-126. 10.1016/j.tcb.2006.12.007.CrossRefPubMed Pillai RS, Bhattacharyya SN, Filipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 2007, 17 (3): 118-126. 10.1016/j.tcb.2006.12.007.CrossRefPubMed
14.
go back to reference Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455 (7209): 64-71. 10.1038/nature07242.CrossRefPubMedPubMedCentral Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455 (7209): 64-71. 10.1038/nature07242.CrossRefPubMedPubMedCentral
15.
go back to reference Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, Hong JS: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics. 2009, 25: 15-10.1186/1755-8794-2-15.CrossRef Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, Hong JS: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics. 2009, 25: 15-10.1186/1755-8794-2-15.CrossRef
16.
go back to reference Jeyaseelan K, Lim KY, Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008, 39 (3): 959-966. 10.1161/STROKEAHA.107.500736.CrossRefPubMed Jeyaseelan K, Lim KY, Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008, 39 (3): 959-966. 10.1161/STROKEAHA.107.500736.CrossRefPubMed
17.
go back to reference Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009, 29 (4): 675-687. 10.1038/jcbfm.2008.157.CrossRefPubMedPubMedCentral Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009, 29 (4): 675-687. 10.1038/jcbfm.2008.157.CrossRefPubMedPubMedCentral
18.
go back to reference Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009, 119 (17): 2357-2366. 10.1161/CIRCULATIONAHA.108.814145.CrossRefPubMedPubMedCentral Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009, 119 (17): 2357-2366. 10.1161/CIRCULATIONAHA.108.814145.CrossRefPubMedPubMedCentral
19.
go back to reference Yin C, Wang X, Kukreja RC: Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 2008, 582 (30): 4137-4142. 10.1016/j.febslet.2008.11.014.CrossRefPubMedPubMedCentral Yin C, Wang X, Kukreja RC: Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 2008, 582 (30): 4137-4142. 10.1016/j.febslet.2008.11.014.CrossRefPubMedPubMedCentral
20.
go back to reference Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007, 42 (6): 1137-1141. 10.1016/j.yjmcc.2007.04.004.CrossRefPubMedPubMedCentral Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007, 42 (6): 1137-1141. 10.1016/j.yjmcc.2007.04.004.CrossRefPubMedPubMedCentral
21.
go back to reference van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006, 103 (48): 18255-18260. 10.1073/pnas.0608791103.CrossRefPubMedPubMedCentral van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006, 103 (48): 18255-18260. 10.1073/pnas.0608791103.CrossRefPubMedPubMedCentral
22.
go back to reference Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007, 104 (43): 17016-17021. 10.1073/pnas.0708115104.CrossRefPubMedPubMedCentral Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007, 104 (43): 17016-17021. 10.1073/pnas.0708115104.CrossRefPubMedPubMedCentral
23.
go back to reference Callis TE, Chen JF, Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26 (4): 219-225. 10.1089/dna.2006.0556.CrossRefPubMed Callis TE, Chen JF, Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26 (4): 219-225. 10.1089/dna.2006.0556.CrossRefPubMed
24.
go back to reference Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8 (12): 1833-1837.CrossRefPubMed Wang H, Sun H, Guttridge DC: microRNAs: novel components in a muscle gene regulatory network. Cell Cycle. 2009, 8 (12): 1833-1837.CrossRefPubMed
25.
go back to reference Potthoff MJ, Olson EN, Bassel-Duby R: Skeletal muscle remodeling. Curr Opin Rheumatol. 2007, 19 (6): 542-549. 10.1097/BOR.0b013e3282efb761.CrossRefPubMed Potthoff MJ, Olson EN, Bassel-Duby R: Skeletal muscle remodeling. Curr Opin Rheumatol. 2007, 19 (6): 542-549. 10.1097/BOR.0b013e3282efb761.CrossRefPubMed
26.
go back to reference Jayaswal V, Lutherborrow M, Ma DD, Hwa Yang Y: Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data. Nucleic Acids Res. 2009, 37 (8): e60-10.1093/nar/gkp153.CrossRefPubMedPubMedCentral Jayaswal V, Lutherborrow M, Ma DD, Hwa Yang Y: Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data. Nucleic Acids Res. 2009, 37 (8): e60-10.1093/nar/gkp153.CrossRefPubMedPubMedCentral
27.
go back to reference Krichevsky AM, Gabriely G: miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009, 13 (1): 39-53. 10.1111/j.1582-4934.2008.00556.x.CrossRefPubMed Krichevsky AM, Gabriely G: miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009, 13 (1): 39-53. 10.1111/j.1582-4934.2008.00556.x.CrossRefPubMed
28.
go back to reference Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130 (7): 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130 (7): 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed
29.
go back to reference Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65 (14): 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65 (14): 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed
30.
go back to reference Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C: MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009, 47 (1): 5-14. 10.1016/j.yjmcc.2009.01.008.CrossRefPubMedPubMedCentral Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C: MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009, 47 (1): 5-14. 10.1016/j.yjmcc.2009.01.008.CrossRefPubMedPubMedCentral
31.
go back to reference Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, 284 (43): 29514-29525. 10.1074/jbc.M109.027896.CrossRefPubMedPubMedCentral Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, 284 (43): 29514-29525. 10.1074/jbc.M109.027896.CrossRefPubMedPubMedCentral
32.
go back to reference Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T: miRecords: an integrated resource for miRNA-target interactions. Nucleic Acids Res. 2009, D105-110. 10.1093/nar/gkn851. 37 Database Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T: miRecords: an integrated resource for miRNA-target interactions. Nucleic Acids Res. 2009, D105-110. 10.1093/nar/gkn851. 37 Database
33.
go back to reference Wicki A, Christofori G: The potential role of podoplanin in tumour invasion. Br J Cancer. 2007, 96 (1): 1-5. 10.1038/sj.bjc.6603518.CrossRefPubMed Wicki A, Christofori G: The potential role of podoplanin in tumour invasion. Br J Cancer. 2007, 96 (1): 1-5. 10.1038/sj.bjc.6603518.CrossRefPubMed
34.
go back to reference Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M: T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22 (14): 3546-3556. 10.1093/emboj/cdg342.CrossRefPubMedPubMedCentral Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M: T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22 (14): 3546-3556. 10.1093/emboj/cdg342.CrossRefPubMedPubMedCentral
35.
36.
go back to reference Carmichael ST, Vespa PM, Saver JL, Coppola G, Geschwind DH, Starkman S, Miller CM, Kidwell CS, Liebeskind DS, Martin NA: Genomic profiles of damage and protection in human intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008, 28 (11): 1860-1875. 10.1038/jcbfm.2008.77.CrossRefPubMedPubMedCentral Carmichael ST, Vespa PM, Saver JL, Coppola G, Geschwind DH, Starkman S, Miller CM, Kidwell CS, Liebeskind DS, Martin NA: Genomic profiles of damage and protection in human intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008, 28 (11): 1860-1875. 10.1038/jcbfm.2008.77.CrossRefPubMedPubMedCentral
37.
go back to reference Crosby ME, Kulshreshtha R, Ivan M, Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009, 69 (3): 1221-1229. 10.1158/0008-5472.CAN-08-2516.CrossRefPubMedPubMedCentral Crosby ME, Kulshreshtha R, Ivan M, Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009, 69 (3): 1221-1229. 10.1158/0008-5472.CAN-08-2516.CrossRefPubMedPubMedCentral
38.
go back to reference Ng JM, Vermeulen W, van der Horst GT, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JH: A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003, 17 (13): 1630-1645. 10.1101/gad.260003.CrossRefPubMedPubMedCentral Ng JM, Vermeulen W, van der Horst GT, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JH: A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003, 17 (13): 1630-1645. 10.1101/gad.260003.CrossRefPubMedPubMedCentral
39.
go back to reference Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20 (14): 2624-2626. 10.1096/fj.06-5097fje.CrossRefPubMed Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20 (14): 2624-2626. 10.1096/fj.06-5097fje.CrossRefPubMed
40.
go back to reference Kapinya KJ, Harms U, Harms C, Blei K, Katchanov J, Dirnagl U, Hörtnagl H: Role of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischaemia in vivo. J Neurochem. 2003, 84 (5): 1028-1039. 10.1046/j.1471-4159.2003.01601.x.CrossRefPubMed Kapinya KJ, Harms U, Harms C, Blei K, Katchanov J, Dirnagl U, Hörtnagl H: Role of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischaemia in vivo. J Neurochem. 2003, 84 (5): 1028-1039. 10.1046/j.1471-4159.2003.01601.x.CrossRefPubMed
41.
go back to reference Sasaki S, Sata F, Katoh S, Saijo Y, Nakajima S, Washino N, Konishi K, Ban S, Ishizuka M, Kishi R: Adverse birth outcomes associated with maternal smoking and polymorphisms in the N-Nitrosamine-metabolizing enzyme genes NQO1 and CYP2E1. Am J Epidemiol. 2008, 167 (6): 719-726. 10.1093/aje/kwm360.CrossRefPubMed Sasaki S, Sata F, Katoh S, Saijo Y, Nakajima S, Washino N, Konishi K, Ban S, Ishizuka M, Kishi R: Adverse birth outcomes associated with maternal smoking and polymorphisms in the N-Nitrosamine-metabolizing enzyme genes NQO1 and CYP2E1. Am J Epidemiol. 2008, 167 (6): 719-726. 10.1093/aje/kwm360.CrossRefPubMed
42.
go back to reference Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20 (14): 2624-2626. 10.1096/fj.06-5097fje.CrossRefPubMed Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT: Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20 (14): 2624-2626. 10.1096/fj.06-5097fje.CrossRefPubMed
43.
go back to reference Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ: A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 2008, 22 (18): 2535-2549. 10.1101/gad.1678608.CrossRefPubMedPubMedCentral Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ: A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 2008, 22 (18): 2535-2549. 10.1101/gad.1678608.CrossRefPubMedPubMedCentral
44.
go back to reference Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 2007, 26 (5): 753-767. 10.1016/j.molcel.2007.05.018.CrossRefPubMedPubMedCentral Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 2007, 26 (5): 753-767. 10.1016/j.molcel.2007.05.018.CrossRefPubMedPubMedCentral
45.
go back to reference Solonen KA, Hjelt L: Morphological changes in striated muscle during ischaemia. Acta Orthop Scand. 1968, 39: 13-19. 10.3109/17453676808989435.CrossRefPubMed Solonen KA, Hjelt L: Morphological changes in striated muscle during ischaemia. Acta Orthop Scand. 1968, 39: 13-19. 10.3109/17453676808989435.CrossRefPubMed
47.
go back to reference Patterson S, Klenerman L: The effect of pneumatic tourniquets on the ultrastructure of skeletal muscle. J Bone Joint Surg Br. 1979, 61 (2): 178-183.PubMed Patterson S, Klenerman L: The effect of pneumatic tourniquets on the ultrastructure of skeletal muscle. J Bone Joint Surg Br. 1979, 61 (2): 178-183.PubMed
49.
go back to reference Jeng SF, Rau CS, Liliang PC, Wu CJ, Lu TH, Chen YC, Lin CJ, Hsieh CH: Profiling muscle-specific microRNA expression after peripheral denervation and re-innervation in a rat model. J Neurotrauma. 2009, 26 (12): 2345-53. 10.1089/neu.2009.0960.CrossRefPubMed Jeng SF, Rau CS, Liliang PC, Wu CJ, Lu TH, Chen YC, Lin CJ, Hsieh CH: Profiling muscle-specific microRNA expression after peripheral denervation and re-innervation in a rat model. J Neurotrauma. 2009, 26 (12): 2345-53. 10.1089/neu.2009.0960.CrossRefPubMed
50.
go back to reference Hsieh CH, Rau CS, Jeng SF, Lin CJ, Chen YC, Wu CJ, Lu TH, Lu CH, Chang WN: Identification of the potential target genes of microRNA-146a induced by PMA treatment in human microvascular endothelial cells. Exp Cell Res. 2010, 316 (7): 1119-1126. 10.1016/j.yexcr.2009.11.013.CrossRefPubMed Hsieh CH, Rau CS, Jeng SF, Lin CJ, Chen YC, Wu CJ, Lu TH, Lu CH, Chang WN: Identification of the potential target genes of microRNA-146a induced by PMA treatment in human microvascular endothelial cells. Exp Cell Res. 2010, 316 (7): 1119-1126. 10.1016/j.yexcr.2009.11.013.CrossRefPubMed
51.
go back to reference Yousef M, Showe L, Showe M: A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J. 2009, 276 (8): 2150-2156. 10.1111/j.1742-4658.2009.06933.x.CrossRefPubMed Yousef M, Showe L, Showe M: A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J. 2009, 276 (8): 2150-2156. 10.1111/j.1742-4658.2009.06933.x.CrossRefPubMed
52.
go back to reference Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, Hong JS: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics. 2009, 25: 15-10.1186/1755-8794-2-15.CrossRef Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, Hong JS: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics. 2009, 25: 15-10.1186/1755-8794-2-15.CrossRef
Metadata
Title
MicroRNA profiling in ischemic injury of the gracilis muscle in rats
Authors
Ching-Hua Hsieh
Jonathan Chris Jeng
Seng-Feng Jeng
Chia-Jung Wu
Tsu-Hsiang Lu
Po-Chou Liliang
Cheng-Shyuan Rau
Yi-Chun Chen
Chia-Jung Lin
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2010
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-11-123

Other articles of this Issue 1/2010

BMC Musculoskeletal Disorders 1/2010 Go to the issue