Skip to main content
Top
Published in: Cancer Cell International 1/2014

Open Access 01-12-2014 | Primary research

An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus

Authors: Louise D Dahl, Thomas J Corydon, Liina Ränkel, Karen Margrethe Nielsen, Ernst-Martin Füchtbauer, Charlotte R Knudsen

Published in: Cancer Cell International | Issue 1/2014

Login to get access

Abstract

Background

The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5′UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3′UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids. Previously, the UTRs were shown to be a prerequisite for the transforming capacity of the PTI-1 transcript. In this study, we have investigated the possible role of the UTRs in regulating protein expression and localization.

Methods

The protein expression profiles of a number of PTI-1 mRNA variants were studied in vitro and in vivo. Furthermore, the oncogenic potentials of the same PTI-1 mRNAs were determined by monitoring the capacities of stably transfected cells expressing these mRNAs to induce tumors in nude mice and form foci in cell culture. Finally, the cellular localizations of PTI-1 proteins expressed from these mRNAs were determined by fluorescence microscopy.

Results

The PTI-1 mRNA was found to give rise to multiple protein products that potentially originate from translation initiation at downstream, inframe AUGs within the major open reading frame. At least one of the truncated protein variants was also found to be oncogenic. However, the UTRs did not appear to influence the amount and identities of these truncated protein products. In contrast, our localization studies showed that the UTRs of the transcript promote a nuclear localization of the encoded protein(s).

Conclusions

Translation of the PTI-1 mRNA results in multiple protein products of which (a) truncated variant(s) may play a predominant role during cellular transformation. The PTI-1 UTRs did not seem to play a role in translation regulation, but appeared to contribute to a nuclear localization of the PTI-1 protein(s). This indicates that the PTI-1 protein(s) exert(s) its/their oncogenic function inside the nucleus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ejiri S: Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem. 2002, 66: 1-21. 10.1271/bbb.66.1.CrossRefPubMed Ejiri S: Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem. 2002, 66: 1-21. 10.1271/bbb.66.1.CrossRefPubMed
2.
go back to reference Shen R, Su Z-Z, Olsson CA, Fisher PB: Identification of the human carcinoma oncogene PTI-1 by rapid expression cloning and differential RNA display. Proc Natl Acad Sci USA. 1995, 92: 6778-6782. 10.1073/pnas.92.15.6778.CrossRefPubMedCentralPubMed Shen R, Su Z-Z, Olsson CA, Fisher PB: Identification of the human carcinoma oncogene PTI-1 by rapid expression cloning and differential RNA display. Proc Natl Acad Sci USA. 1995, 92: 6778-6782. 10.1073/pnas.92.15.6778.CrossRefPubMedCentralPubMed
3.
go back to reference Mansilla F, Hansen LL, Jakobsen H, Kjeldgaard NO, Clark BF, Knudsen CR: Deconstructing PTI-1: PTI-1 is a truncated, but not mutated, form of translation elongation factor 1A1, eEF1A1. Biochim Biophys Acta. 2005, 1727: 116-124. 10.1016/j.bbaexp.2004.12.012.CrossRefPubMed Mansilla F, Hansen LL, Jakobsen H, Kjeldgaard NO, Clark BF, Knudsen CR: Deconstructing PTI-1: PTI-1 is a truncated, but not mutated, form of translation elongation factor 1A1, eEF1A1. Biochim Biophys Acta. 2005, 1727: 116-124. 10.1016/j.bbaexp.2004.12.012.CrossRefPubMed
4.
go back to reference Su Z-Z, Olsson CA, Zimmer SG, Fisher PB: Transfer of a dominant-acting tumor-inducing oncogene from human prostatic carcinoma cells to cloned rat embryo fibroblast cells by DNA-transfection. Anticancer Res. 1992, 12: 297-304.PubMed Su Z-Z, Olsson CA, Zimmer SG, Fisher PB: Transfer of a dominant-acting tumor-inducing oncogene from human prostatic carcinoma cells to cloned rat embryo fibroblast cells by DNA-transfection. Anticancer Res. 1992, 12: 297-304.PubMed
5.
go back to reference Yu L, Wu G, Wang L, Wang H, Zhang G: Transient reduction of PTI-1 expression by short interfering RNAs inhibits the growth of human prostate cancer cell lines. Tohoku J Exp Med. 2006, 209: 141-148. 10.1620/tjem.209.141.CrossRefPubMed Yu L, Wu G, Wang L, Wang H, Zhang G: Transient reduction of PTI-1 expression by short interfering RNAs inhibits the growth of human prostate cancer cell lines. Tohoku J Exp Med. 2006, 209: 141-148. 10.1620/tjem.209.141.CrossRefPubMed
6.
go back to reference Gopalkrishnan RV, Su Z, Goldstein NI, Fisher PB: Translational infidelity and human cancer: role of the PTI-1 oncogene. Int J Biochem Cell Biol. 1999, 31: 151-162. 10.1016/S1357-2725(98)00138-1.CrossRefPubMed Gopalkrishnan RV, Su Z, Goldstein NI, Fisher PB: Translational infidelity and human cancer: role of the PTI-1 oncogene. Int J Biochem Cell Biol. 1999, 31: 151-162. 10.1016/S1357-2725(98)00138-1.CrossRefPubMed
7.
go back to reference Lee M-H, Surh Y-J: eEF1A2 as a putative oncogene. Ann N Y Acad Sci. 2009, 1171: 87-93. 10.1111/j.1749-6632.2009.04909.x.CrossRefPubMed Lee M-H, Surh Y-J: eEF1A2 as a putative oncogene. Ann N Y Acad Sci. 2009, 1171: 87-93. 10.1111/j.1749-6632.2009.04909.x.CrossRefPubMed
8.
go back to reference Su Z, Goldstein NI, Fisher PB: Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes. Proc Natl Acad Sci USA. 1998, 95: 1764-1769. 10.1073/pnas.95.4.1764.CrossRefPubMedCentralPubMed Su Z, Goldstein NI, Fisher PB: Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes. Proc Natl Acad Sci USA. 1998, 95: 1764-1769. 10.1073/pnas.95.4.1764.CrossRefPubMedCentralPubMed
9.
go back to reference Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S: Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001, 276: 73-81. 10.1016/S0378-1119(01)00674-6.CrossRefPubMed Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S: Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001, 276: 73-81. 10.1016/S0378-1119(01)00674-6.CrossRefPubMed
10.
go back to reference Kozak M: An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991, 115: 887-903. 10.1083/jcb.115.4.887.CrossRefPubMed Kozak M: An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991, 115: 887-903. 10.1083/jcb.115.4.887.CrossRefPubMed
12.
go back to reference Dasso MC, Jackson RJ: On the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. Nucleic Acids Res. 1989, 17: 3129-3144. 10.1093/nar/17.8.3129.CrossRefPubMedCentralPubMed Dasso MC, Jackson RJ: On the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. Nucleic Acids Res. 1989, 17: 3129-3144. 10.1093/nar/17.8.3129.CrossRefPubMedCentralPubMed
13.
go back to reference Kozak M: Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 1990, 18: 2828-10.1093/nar/18.9.2828.CrossRefPubMedCentralPubMed Kozak M: Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 1990, 18: 2828-10.1093/nar/18.9.2828.CrossRefPubMedCentralPubMed
14.
go back to reference Scaggiante B, Bonin S, Cristiano L, Siracusano S, Stanta G, Dapas B, Giansante C, Fiotti N, Grassi G: Prostate tumor-inducing gene-1 analysis in human prostate cancer cells and tissue in relation to Mycoplasma infection. Cancer Invest. 2009, 26: 800-808.CrossRef Scaggiante B, Bonin S, Cristiano L, Siracusano S, Stanta G, Dapas B, Giansante C, Fiotti N, Grassi G: Prostate tumor-inducing gene-1 analysis in human prostate cancer cells and tissue in relation to Mycoplasma infection. Cancer Invest. 2009, 26: 800-808.CrossRef
15.
go back to reference Vislovukh AA, Shalak VF, Savytskyi OV, Kovalenko NI, Gralievska NL, Negrutskii BS, El'skaya AV: PTI-1: novel way to oncogenicity. Biopolymers and Cell. 2012, 28: 404-410.CrossRef Vislovukh AA, Shalak VF, Savytskyi OV, Kovalenko NI, Gralievska NL, Negrutskii BS, El'skaya AV: PTI-1: novel way to oncogenicity. Biopolymers and Cell. 2012, 28: 404-410.CrossRef
16.
go back to reference Donnelly C, Fainzilber M, Twiss JL: Subcellular communication through RNA transport and localized protein synthesis. Traffic. 2010, 11: 1498-1505. 10.1111/j.1600-0854.2010.01118.x.CrossRefPubMedCentralPubMed Donnelly C, Fainzilber M, Twiss JL: Subcellular communication through RNA transport and localized protein synthesis. Traffic. 2010, 11: 1498-1505. 10.1111/j.1600-0854.2010.01118.x.CrossRefPubMedCentralPubMed
17.
go back to reference Dalgleish G, Veyrune JL, Blanchard JM, Hesketh J: mRNA localization by a 145-nucleotide region of the c-fos 3′-untranslated region. J Biol Chem. 2001, 276: 13593-13599.PubMed Dalgleish G, Veyrune JL, Blanchard JM, Hesketh J: mRNA localization by a 145-nucleotide region of the c-fos 3′-untranslated region. J Biol Chem. 2001, 276: 13593-13599.PubMed
18.
go back to reference Mickleburgh I, Burtle B, Hollås H, Campbell G, Chrzanowska-Lightowlers Z, Vedeler A, Hesketh J: Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J. 2005, 272: 413-421. 10.1111/j.1742-4658.2004.04481.x.CrossRefPubMed Mickleburgh I, Burtle B, Hollås H, Campbell G, Chrzanowska-Lightowlers Z, Vedeler A, Hesketh J: Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J. 2005, 272: 413-421. 10.1111/j.1742-4658.2004.04481.x.CrossRefPubMed
19.
go back to reference Fan K, Chrzanowska-Lightowlers ZM, Hesketh JE: Fine mapping of interactions between eEF1alpha protein and 3′UTR of metallothionein-1 mRNA. Biochem Biophys Res Com. 2009, 386: 82-88. 10.1016/j.bbrc.2009.05.146.CrossRefPubMedCentralPubMed Fan K, Chrzanowska-Lightowlers ZM, Hesketh JE: Fine mapping of interactions between eEF1alpha protein and 3′UTR of metallothionein-1 mRNA. Biochem Biophys Res Com. 2009, 386: 82-88. 10.1016/j.bbrc.2009.05.146.CrossRefPubMedCentralPubMed
20.
go back to reference Saunders C, Cohen RS: The role of oocyte transcription, the 5′UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol Cell. 1999, 3: 43-54. 10.1016/S1097-2765(00)80173-2.CrossRefPubMed Saunders C, Cohen RS: The role of oocyte transcription, the 5′UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol Cell. 1999, 3: 43-54. 10.1016/S1097-2765(00)80173-2.CrossRefPubMed
21.
go back to reference Chartrand P, Meng XH, Singer RH, Long RM: Structural elements required for the localization of ASH1 mRNa and of a green fluorescent protein reporter particle in vivo. Curr Biol. 1999, 9: 333-336. 10.1016/S0960-9822(99)80144-4.CrossRefPubMed Chartrand P, Meng XH, Singer RH, Long RM: Structural elements required for the localization of ASH1 mRNa and of a green fluorescent protein reporter particle in vivo. Curr Biol. 1999, 9: 333-336. 10.1016/S0960-9822(99)80144-4.CrossRefPubMed
22.
go back to reference Minella O, Mulner-Lorillon O, De Smedt V, Hourdez S, Cormier P, Belle R: Major intracellular localization of elongation factor-1. Cell Mol Biol. 1996, 42: 805-810.PubMed Minella O, Mulner-Lorillon O, De Smedt V, Hourdez S, Cormier P, Belle R: Major intracellular localization of elongation factor-1. Cell Mol Biol. 1996, 42: 805-810.PubMed
23.
go back to reference Kjær S, Wind T, Ravn P, Østergaard M, Clark BFC, Nissim A: Generation and epitope mapping of high-affinity scFv to eukaryotic elongation factor 1A by dual application of phage display. Eur J Biochem. 2001, 268: 3407-3415. 10.1046/j.1432-1327.2001.02240.x.CrossRefPubMed Kjær S, Wind T, Ravn P, Østergaard M, Clark BFC, Nissim A: Generation and epitope mapping of high-affinity scFv to eukaryotic elongation factor 1A by dual application of phage display. Eur J Biochem. 2001, 268: 3407-3415. 10.1046/j.1432-1327.2001.02240.x.CrossRefPubMed
24.
go back to reference Billaut-Mulot O, Fernandez-Gomez R, Loyens M, Ouaissi A: Trypanosoma cruzi elongation factor 1-alpha: nuclear localiztaion in parasites undergoing apoptosis. Gene. 1996, 174: 19-26. 10.1016/0378-1119(96)00254-5.CrossRefPubMed Billaut-Mulot O, Fernandez-Gomez R, Loyens M, Ouaissi A: Trypanosoma cruzi elongation factor 1-alpha: nuclear localiztaion in parasites undergoing apoptosis. Gene. 1996, 174: 19-26. 10.1016/0378-1119(96)00254-5.CrossRefPubMed
25.
go back to reference Gangwani L, Mikrut M, Galcheva-Gargova Z, Davis RJ: Interaction of ZPR1 with translation elongation factor-1alpha in proliferating cells. J Cell Biol. 1998, 143: 1471-1484. 10.1083/jcb.143.6.1471.CrossRefPubMedCentralPubMed Gangwani L, Mikrut M, Galcheva-Gargova Z, Davis RJ: Interaction of ZPR1 with translation elongation factor-1alpha in proliferating cells. J Cell Biol. 1998, 143: 1471-1484. 10.1083/jcb.143.6.1471.CrossRefPubMedCentralPubMed
26.
go back to reference Dapas B, Tell G, Scaloni A, Pines A, Ferrara L, Quadrifoglio F, Scaggiante B: Identification of different isoforms of eEF1A in the nuclear fraction of human T-lymphoblastic cancer cell line specifically binding to aptameric cytotoxic GT oligomers. Eur J Biochem. 2003, 270: 3251-3262. 10.1046/j.1432-1033.2003.03713.x.CrossRefPubMed Dapas B, Tell G, Scaloni A, Pines A, Ferrara L, Quadrifoglio F, Scaggiante B: Identification of different isoforms of eEF1A in the nuclear fraction of human T-lymphoblastic cancer cell line specifically binding to aptameric cytotoxic GT oligomers. Eur J Biochem. 2003, 270: 3251-3262. 10.1046/j.1432-1033.2003.03713.x.CrossRefPubMed
27.
go back to reference Mishra AK, Gangwani L, Davis RJ, Lambright DG: Structural insight into the interaction of the evolutionary conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes. Proc Natl Acad Sci USA. 2007, 104: 13939-13935. Mishra AK, Gangwani L, Davis RJ, Lambright DG: Structural insight into the interaction of the evolutionary conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes. Proc Natl Acad Sci USA. 2007, 104: 13939-13935.
28.
go back to reference Leclercq TM, Moretti PAB, Vadas MA, Pitson SM: Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem. 2008, 283: 9606-9614. 10.1074/jbc.M708782200.CrossRefPubMedCentralPubMed Leclercq TM, Moretti PAB, Vadas MA, Pitson SM: Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem. 2008, 283: 9606-9614. 10.1074/jbc.M708782200.CrossRefPubMedCentralPubMed
29.
go back to reference Leclercq TM, Moretti PAB, Pitson SM: Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene. 2011, 30: 372-378. 10.1038/onc.2010.420.CrossRefPubMed Leclercq TM, Moretti PAB, Pitson SM: Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene. 2011, 30: 372-378. 10.1038/onc.2010.420.CrossRefPubMed
30.
31.
go back to reference Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003, 278: 46832-46839. 10.1074/jbc.M306577200.CrossRefPubMed Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003, 278: 46832-46839. 10.1074/jbc.M306577200.CrossRefPubMed
32.
go back to reference Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H, Payne SG, Bektas M, Ishii I, Chun J, Milstien S, Spiegel S: Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem. 2003, 278: 40330-40336. 10.1074/jbc.M304455200.CrossRefPubMed Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H, Payne SG, Bektas M, Ishii I, Chun J, Milstien S, Spiegel S: Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem. 2003, 278: 40330-40336. 10.1074/jbc.M304455200.CrossRefPubMed
33.
go back to reference Okada T, Ding G, Sonoda H, Kajimoto T, Haga Y, Khosrowbeygi A, Gao S, Miwa N, Jahangeer S, Nakamura S: Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem. 2005, 280: 36318-36325. 10.1074/jbc.M504507200.CrossRefPubMed Okada T, Ding G, Sonoda H, Kajimoto T, Haga Y, Khosrowbeygi A, Gao S, Miwa N, Jahangeer S, Nakamura S: Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem. 2005, 280: 36318-36325. 10.1074/jbc.M504507200.CrossRefPubMed
34.
go back to reference Nguyen TLX, Choi JW, Lee SB, Ye K, Woo SD, Lee KH, Ahn JY: Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells. Biochem Biophys Res Com. 2006, 349: 789-798. 10.1016/j.bbrc.2006.08.120.CrossRef Nguyen TLX, Choi JW, Lee SB, Ye K, Woo SD, Lee KH, Ahn JY: Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells. Biochem Biophys Res Com. 2006, 349: 789-798. 10.1016/j.bbrc.2006.08.120.CrossRef
35.
go back to reference Maddika S, Bay GH, Kroczak TJ, Ande SR, Maddika S, Wiechec E, Gibson SB, Los M: Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death. Cell Prolif. 2007, 40: 835-848. 10.1111/j.1365-2184.2007.00475.x.CrossRefPubMedCentralPubMed Maddika S, Bay GH, Kroczak TJ, Ande SR, Maddika S, Wiechec E, Gibson SB, Los M: Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death. Cell Prolif. 2007, 40: 835-848. 10.1111/j.1365-2184.2007.00475.x.CrossRefPubMedCentralPubMed
36.
go back to reference Los M, Maddika S, Erb B, Schulze-Osthoff K: Switching Akt: from survival signalign to deadly reponse. BioEssays. 2009, 31: 492-495. 10.1002/bies.200900005.CrossRefPubMedCentralPubMed Los M, Maddika S, Erb B, Schulze-Osthoff K: Switching Akt: from survival signalign to deadly reponse. BioEssays. 2009, 31: 492-495. 10.1002/bies.200900005.CrossRefPubMedCentralPubMed
37.
go back to reference Lau J, Castelli LA, Lin E, Macaulay SL: Identification of elongation factor 1alpha as a potential associated binding partner for Akt2. Mol Cell Biochem. 2006, 286: 17-22. 10.1007/s11010-005-9006-5.CrossRefPubMed Lau J, Castelli LA, Lin E, Macaulay SL: Identification of elongation factor 1alpha as a potential associated binding partner for Akt2. Mol Cell Biochem. 2006, 286: 17-22. 10.1007/s11010-005-9006-5.CrossRefPubMed
38.
go back to reference Pecorari L, Marin O, Silvestri C, Candini O, Rossi E, Guerzoni C, Cattelani S, Mariani SA, Corradini F, Ferrari-Amorotti G, Cortesi L, Bussolari R, Raschella G, Federico MR, Calabretta B: Elongation factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility. Mol Cancer. 2009, 8: 58-10.1186/1476-4598-8-58.CrossRefPubMedCentralPubMed Pecorari L, Marin O, Silvestri C, Candini O, Rossi E, Guerzoni C, Cattelani S, Mariani SA, Corradini F, Ferrari-Amorotti G, Cortesi L, Bussolari R, Raschella G, Federico MR, Calabretta B: Elongation factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility. Mol Cancer. 2009, 8: 58-10.1186/1476-4598-8-58.CrossRefPubMedCentralPubMed
39.
go back to reference Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed
40.
go back to reference Faerch M, Christensen JH, Rittig S, Johansson JO, Gregersen N, de Zegher F, Corydon TJ: Diverse vasopressin V2 recpetor functionality underlying partical congenital nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2009, 297: F1518-F1525. 10.1152/ajprenal.00331.2009.CrossRefPubMed Faerch M, Christensen JH, Rittig S, Johansson JO, Gregersen N, de Zegher F, Corydon TJ: Diverse vasopressin V2 recpetor functionality underlying partical congenital nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2009, 297: F1518-F1525. 10.1152/ajprenal.00331.2009.CrossRefPubMed
Metadata
Title
An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus
Authors
Louise D Dahl
Thomas J Corydon
Liina Ränkel
Karen Margrethe Nielsen
Ernst-Martin Füchtbauer
Charlotte R Knudsen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2014
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-14-17

Other articles of this Issue 1/2014

Cancer Cell International 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine