Skip to main content
Top
Published in: Basic Research in Cardiology 2/2019

01-03-2019 | Original Contribution

Endothelial α1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction

Authors: Swenja Kröller-Schön, Thomas Jansen, Thi Lan P. Tran, Miroslawa Kvandová, Sanela Kalinovic, Matthias Oelze, John F. Keaney Jr., Marc Foretz, Benoit Viollet, Andreas Daiber, Sabine Kossmann, Jeremy Lagrange, Katie Frenis, Philip Wenzel, Thomas Münzel, Eberhard Schulz

Published in: Basic Research in Cardiology | Issue 2/2019

Login to get access

Abstract

Mice with a global deletion of α1AMPK are characterized by endothelial dysfunction and NADPH oxidase subunit 2 (NOX-2)-mediated vascular oxidative stress. However, the underlying mechanisms are incompletely understood and may involve endothelial NOX-2 upregulation or facilitated vascular infiltration of phagocytic cells. Therefore, the current study was designed to investigate the vascular effects of chronic angiotensin II (AngII) infusion in mice with an endothelial-specific α1AMPK deletion. A mouse strain with endothelial-specific α1AMPK deletion was generated by breeding α1AMPKflox/flox mice with TekCre+ or Cadh5Cre+ mice. Chronic AngII infusion (0.5 mg/kg/day for 7day) caused mild endothelial dysfunction in wild-type mice that was significantly aggravated in endothelial α1AMPK knockout mice. Aortic NOX-2 and CD68 expression were increased, indicating that infiltrating leukocytes may significantly contribute to enhanced vascular oxidative stress. Flow cytometry revealed a higher abundance of aortic CD90.2+ T-cells, CD11b+F4/80+ macrophages and Ly6GLy6C+ monocytes. Vascular mRNA expression of monocyte chemoattractant protein 1, CCL5 and vascular cell adhesion molecule 1 was enhanced in AngII-infused mice lacking endothelial α1AMPK, facilitating the recruitment of inflammatory cells to the vessel wall. In addition, AngII-induced upregulation of cytoprotective heme oxygenase 1 (HO-1) was blunted in mice with endothelial α1AMPK deletion, compatible with an impaired antioxidant defense in these animals. In summary, endothelial expressed α1AMPK limits the recruitment of inflammatory cells to the vessel wall and maintains HO-1 mediated antioxidant defense. Both mechanisms reduce vascular oxidative damage and preserve endothelial function during chronic AngII treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abdel Malik R, Zippel N, Fromel T, Heidler J, Zukunft S, Walzog B, Ansari N, Pampaloni F, Wingert S, Rieger MA, Wittig I, Fisslthaler B, Fleming I (2017) AMP-activated protein kinase alpha2 in neutrophils regulates vascular repair via hypoxia-inducible factor-1alpha and a network of proteins affecting metabolism and apoptosis. Circ Res 120:99–109. https://doi.org/10.1161/circresaha.116.309937 CrossRefPubMed Abdel Malik R, Zippel N, Fromel T, Heidler J, Zukunft S, Walzog B, Ansari N, Pampaloni F, Wingert S, Rieger MA, Wittig I, Fisslthaler B, Fleming I (2017) AMP-activated protein kinase alpha2 in neutrophils regulates vascular repair via hypoxia-inducible factor-1alpha and a network of proteins affecting metabolism and apoptosis. Circ Res 120:99–109. https://​doi.​org/​10.​1161/​circresaha.​116.​309937 CrossRefPubMed
5.
go back to reference De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113. https://doi.org/10.1161/01.atv.0000181743.28028.57 CrossRefPubMed De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113. https://​doi.​org/​10.​1161/​01.​atv.​0000181743.​28028.​57 CrossRefPubMed
7.
go back to reference Galic S, Fullerton MD, Schertzer JD, Sikkema S, Marcinko K, Walkley CR, Izon D, Honeyman J, Chen ZP, van Denderen BJ, Kemp BE, Steinberg GR (2011) Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Investig 121:4903–4915. https://doi.org/10.1172/jci58577 CrossRefPubMed Galic S, Fullerton MD, Schertzer JD, Sikkema S, Marcinko K, Walkley CR, Izon D, Honeyman J, Chen ZP, van Denderen BJ, Kemp BE, Steinberg GR (2011) Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Investig 121:4903–4915. https://​doi.​org/​10.​1172/​jci58577 CrossRefPubMed
12.
go back to reference Jansen T, Kroller-Schon S, Schonfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandova M, Kalinovic S, Lagrange J, Keaney JF Jr, Munzel T, Wenzel P, Schulz E (2018) Alpha1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 114:1883–1893. https://doi.org/10.1093/cvr/cvy172 CrossRefPubMed Jansen T, Kroller-Schon S, Schonfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandova M, Kalinovic S, Lagrange J, Keaney JF Jr, Munzel T, Wenzel P, Schulz E (2018) Alpha1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 114:1883–1893. https://​doi.​org/​10.​1093/​cvr/​cvy172 CrossRefPubMed
16.
go back to reference Kossmann S, Hu H, Steven S, Schonfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, Becker C, Oelze M, Bauersachs J, Widder J, Munzel T, Daiber A, Wenzel P (2014) Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem 289:27540–27550. https://doi.org/10.1074/jbc.m114.604231 CrossRefPubMed Kossmann S, Hu H, Steven S, Schonfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, Becker C, Oelze M, Bauersachs J, Widder J, Munzel T, Daiber A, Wenzel P (2014) Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem 289:27540–27550. https://​doi.​org/​10.​1074/​jbc.​m114.​604231 CrossRefPubMed
17.
go back to reference Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20:247–266. https://doi.org/10.1089/ars.2012.4953 CrossRefPubMed Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20:247–266. https://​doi.​org/​10.​1089/​ars.​2012.​4953 CrossRefPubMed
18.
go back to reference Kuhlencordt PJ, Rosel E, Gerszten RE, Morales-Ruiz M, Dombkowski D, Atkinson WJ, Han F, Preffer F, Rosenzweig A, Sessa WC, Gimbrone MA Jr, Ertl G, Huang PL (2004) Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol Cell Physiol 286:C1195–C1202. https://doi.org/10.1152/ajpcell.00546.2002 CrossRefPubMed Kuhlencordt PJ, Rosel E, Gerszten RE, Morales-Ruiz M, Dombkowski D, Atkinson WJ, Han F, Preffer F, Rosenzweig A, Sessa WC, Gimbrone MA Jr, Ertl G, Huang PL (2004) Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol Cell Physiol 286:C1195–C1202. https://​doi.​org/​10.​1152/​ajpcell.​00546.​2002 CrossRefPubMed
20.
go back to reference Mancini SJ, White AD, Bijland S, Rutherford C, Graham D, Richter EA, Viollet B, Touyz RM, Palmer TM, Salt IP (2017) Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 440:44–56. https://doi.org/10.1016/j.mce.2016.11.010 CrossRefPubMed Mancini SJ, White AD, Bijland S, Rutherford C, Graham D, Richter EA, Viollet B, Touyz RM, Palmer TM, Salt IP (2017) Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 440:44–56. https://​doi.​org/​10.​1016/​j.​mce.​2016.​11.​010 CrossRefPubMed
21.
go back to reference Mangalam AK, Rattan R, Suhail H, Singh J, Hoda MN, Deshpande M, Fulzele S, Denic A, Shridhar V, Kumar A, Viollet B, Rodriguez M, Giri S (2016) AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage-Th17 axis. J Immunol 197:747–760. https://doi.org/10.4049/jimmunol.1501549 CrossRefPubMed Mangalam AK, Rattan R, Suhail H, Singh J, Hoda MN, Deshpande M, Fulzele S, Denic A, Shridhar V, Kumar A, Viollet B, Rodriguez M, Giri S (2016) AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage-Th17 axis. J Immunol 197:747–760. https://​doi.​org/​10.​4049/​jimmunol.​1501549 CrossRefPubMed
26.
go back to reference Rutherford C, Speirs C, Williams JJ, Ewart MA, Mancini SJ, Hawley SA, Delles C, Viollet B, Costa-Pereira AP, Baillie GS, Salt IP, Palmer TM (2016) Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci Signal 9:ra109. https://doi.org/10.1126/scisignal.aaf8566 CrossRefPubMed Rutherford C, Speirs C, Williams JJ, Ewart MA, Mancini SJ, Hawley SA, Delles C, Viollet B, Costa-Pereira AP, Baillie GS, Salt IP, Palmer TM (2016) Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci Signal 9:ra109. https://​doi.​org/​10.​1126/​scisignal.​aaf8566 CrossRefPubMed
27.
go back to reference Schuhmacher S, Foretz M, Knorr M, Jansen T, Hortmann M, Wenzel P, Oelze M, Kleschyov AL, Daiber A, Keaney JF Jr, Wegener G, Lackner K, Munzel T, Viollet B, Schulz E (2011) Alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler Thromb Vasc Biol 31:560–566. https://doi.org/10.1161/atvbaha.110.219543 CrossRefPubMed Schuhmacher S, Foretz M, Knorr M, Jansen T, Hortmann M, Wenzel P, Oelze M, Kleschyov AL, Daiber A, Keaney JF Jr, Wegener G, Lackner K, Munzel T, Viollet B, Schulz E (2011) Alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler Thromb Vasc Biol 31:560–566. https://​doi.​org/​10.​1161/​atvbaha.​110.​219543 CrossRefPubMed
34.
35.
Metadata
Title
Endothelial α1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction
Authors
Swenja Kröller-Schön
Thomas Jansen
Thi Lan P. Tran
Miroslawa Kvandová
Sanela Kalinovic
Matthias Oelze
John F. Keaney Jr.
Marc Foretz
Benoit Viollet
Andreas Daiber
Sabine Kossmann
Jeremy Lagrange
Katie Frenis
Philip Wenzel
Thomas Münzel
Eberhard Schulz
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 2/2019
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-019-0717-2

Other articles of this Issue 2/2019

Basic Research in Cardiology 2/2019 Go to the issue