Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Endometrial Cancer | Primary research

Prognostic value of an autophagy-related gene expression signature for endometrial cancer patients

Authors: Hui Wang, Xiaoling Ma, Jinhui Liu, Yicong Wan, Yi Jiang, Yankai Xia, Wenjun Cheng

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Autophagy is associated with cancer development. Autophagy-related genes play significant roles in endometrial cancer (EC), a major gynecological malignancy worldwide, but little was known about their value as prognostic markers. Here we evaluated the value of a prognostic signature based on autophagy-related genes for EC.

Methods

First, various autophagy-related genes were obtained via the Human Autophagy Database and their expression profiles were downloaded from The Cancer Genome Atlas. Second, key prognostic autophagy-related genes were identified via univariate, LASSO and multivariate Cox regression analyses. Finally, a risk score to predict the prognosis of EC was calculated and validated by using the test and the entire data sets. Besides, the key genes mRNA expression were validated using quantitative real-time PCR in clinical tissue samples.

Results

A total of 40 differentially expressed autophagy-related genes in EC were screened and five of them were prognosis-related (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1). A prognostic signature was constructed based on these five genes using the train set, which stratified EC patients into high-risk and low-risk groups (p < 0.05). In terms of overall survival, the analyses of the test set and the entire set yielded consistent results (test set: p < 0.05; entire set: p < 0.05). Time-dependent ROC analysis suggested that the risk score predicted EC prognosis accurately and independently (0.674 at 1 year, 0.712 at 3 years and 0.659 at 5 years). A nomogram with clinical utility was built. Patients in the high-risk group displayed distinct mutation signatures compared with those in the low-risk group. For clinical sample validation, we found that EIF4EBP1and ERBB2 had higher level in EC than that in normal tissues while CDKN1B, DLC1 and GRID1 had lower level, which was consistent with the results predicted.

Conclusions

Based on five autophagy-related genes (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), our model can independently predict the OS of EC patients by combining molecular signature and clinical characteristics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–42.PubMedCrossRef Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–42.PubMedCrossRef
4.
5.
go back to reference Uccella S, Bonzini M, Palomba S, Fanfani F, Ceccaroni M, Seracchioli R, Vizza E, Ferrero A, Roviglione G, Casadio P, Corrado G, Scambia G, Ghezzi F. Impact of obesity on surgical treatment for endometrial cancer: a multicenter study comparing laparoscopy vs open surgery, with propensity-matched analysis. J Minim Invasive Gynecol. 2016;23(1):53–61.PubMedCrossRef Uccella S, Bonzini M, Palomba S, Fanfani F, Ceccaroni M, Seracchioli R, Vizza E, Ferrero A, Roviglione G, Casadio P, Corrado G, Scambia G, Ghezzi F. Impact of obesity on surgical treatment for endometrial cancer: a multicenter study comparing laparoscopy vs open surgery, with propensity-matched analysis. J Minim Invasive Gynecol. 2016;23(1):53–61.PubMedCrossRef
6.
go back to reference Connor EV, Rose PG. Management strategies for recurrent endometrial cancer. Expert Rev Anticancer Ther. 2018;18(9):873–85.PubMedCrossRef Connor EV, Rose PG. Management strategies for recurrent endometrial cancer. Expert Rev Anticancer Ther. 2018;18(9):873–85.PubMedCrossRef
7.
go back to reference Balch C, Matei DE, Huang TH, Nephew KP. Role of epigenomics in ovarian and endometrial cancers. Epigenomics. 2010;2(3):419–47.PubMedCrossRef Balch C, Matei DE, Huang TH, Nephew KP. Role of epigenomics in ovarian and endometrial cancers. Epigenomics. 2010;2(3):419–47.PubMedCrossRef
8.
go back to reference Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Autophagy in endometrial carcinomas and prognostic relevance of ‘stone-like’ structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy. 2011;7(1):74–82.PubMedCrossRef Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Autophagy in endometrial carcinomas and prognostic relevance of ‘stone-like’ structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy. 2011;7(1):74–82.PubMedCrossRef
9.
go back to reference Eritja N, Chen BJ, Rodriguez-Barrueco R, Santacana M, Gatius S, Vidal A, Marti MD, Ponce J, Bergada L, Yeramian A, Encinas M, Ribera J, Reventos J, Boyd J, Villanueva A, Matias-Guiu X, Dolcet X, Llobet-Navas D. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13(3):608–24.PubMedPubMedCentralCrossRef Eritja N, Chen BJ, Rodriguez-Barrueco R, Santacana M, Gatius S, Vidal A, Marti MD, Ponce J, Bergada L, Yeramian A, Encinas M, Ribera J, Reventos J, Boyd J, Villanueva A, Matias-Guiu X, Dolcet X, Llobet-Navas D. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13(3):608–24.PubMedPubMedCentralCrossRef
10.
go back to reference Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;2016:90–7.CrossRef Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;2016:90–7.CrossRef
11.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert B, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2015;102(43):15545–50.CrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert B, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2015;102(43):15545–50.CrossRef
12.
go back to reference Merico D, Isserlin R, Stueker O, Emili A, Bader G. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5(11):13984.CrossRef Merico D, Isserlin R, Stueker O, Emili A, Bader G. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5(11):13984.CrossRef
13.
go back to reference Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.PubMedPubMedCentralCrossRef Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.PubMedPubMedCentralCrossRef
14.
go back to reference Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling endometrial cancer: past, present, and future. Int J Mol Sci. 2018;19(8):2348.PubMedCentralCrossRef Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling endometrial cancer: past, present, and future. Int J Mol Sci. 2018;19(8):2348.PubMedCentralCrossRef
15.
go back to reference Stampoliou A, Arapantoni-Dadioti P, Pavlakis K. Epigenetic mechanisms in endometrial cancer. J BUON. 2016;21(2):301–6.PubMed Stampoliou A, Arapantoni-Dadioti P, Pavlakis K. Epigenetic mechanisms in endometrial cancer. J BUON. 2016;21(2):301–6.PubMed
16.
go back to reference Taoussi N, Alghamdi A, Futyma K, Rechberger T. Biological markers with potential clinical value in endometrial cancer—review of the literature. Ginekol Pol. 2017;88(6):331–6.PubMedCrossRef Taoussi N, Alghamdi A, Futyma K, Rechberger T. Biological markers with potential clinical value in endometrial cancer—review of the literature. Ginekol Pol. 2017;88(6):331–6.PubMedCrossRef
17.
go back to reference Antonioli M, Rienzo MD, Piacentini M, Fimia GM. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 2017;42(1):28–41.PubMedCrossRef Antonioli M, Rienzo MD, Piacentini M, Fimia GM. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 2017;42(1):28–41.PubMedCrossRef
18.
go back to reference Liu H, Zhang L, Zhang X, Cui Z. PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. Onco Targets Ther. 2017;10:2865–71.PubMedPubMedCentralCrossRef Liu H, Zhang L, Zhang X, Cui Z. PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. Onco Targets Ther. 2017;10:2865–71.PubMedPubMedCentralCrossRef
19.
go back to reference Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB. Autophagy: cancer’s friend or foe? Adv Cancer Res. 2013;118:61–95.PubMedPubMedCentralCrossRef Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB. Autophagy: cancer’s friend or foe? Adv Cancer Res. 2013;118:61–95.PubMedPubMedCentralCrossRef
20.
go back to reference Lorin S, Hamai A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol. 2013;23(5):361–79.PubMedCrossRef Lorin S, Hamai A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol. 2013;23(5):361–79.PubMedCrossRef
21.
go back to reference An Y, Bi F, You Y, Liu X, Yang Q. Development of a novel autophagy-related prognostic signature for serous ovarian cancer. J Cancer. 2018;9(21):4058–71.PubMedPubMedCentralCrossRef An Y, Bi F, You Y, Liu X, Yang Q. Development of a novel autophagy-related prognostic signature for serous ovarian cancer. J Cancer. 2018;9(21):4058–71.PubMedPubMedCentralCrossRef
22.
go back to reference Wang SS, Chen G, Li SH, Pang JS, Cai KT, Yan HB, Huang ZG, He RQ. Identification and validation of an individualized autophagy-clinical prognostic index in bladder cancer patients. Onco Targets Ther. 2019;12:3695–712.PubMedPubMedCentralCrossRef Wang SS, Chen G, Li SH, Pang JS, Cai KT, Yan HB, Huang ZG, He RQ. Identification and validation of an individualized autophagy-clinical prognostic index in bladder cancer patients. Onco Targets Ther. 2019;12:3695–712.PubMedPubMedCentralCrossRef
23.
go back to reference Polyak K, Kato J, Solomon ZMJ, Sherr CJ, Massague ZJ, Roberts JM, Koff A. p27 Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-13 and contact inhibition to cell cycle arrest. Genes Dev. 1994;8(1):9–22.PubMedCrossRef Polyak K, Kato J, Solomon ZMJ, Sherr CJ, Massague ZJ, Roberts JM, Koff A. p27 Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-13 and contact inhibition to cell cycle arrest. Genes Dev. 1994;8(1):9–22.PubMedCrossRef
24.
go back to reference Cusan M, Mungo G, De Marco Zompit M, Segatto I, Belletti B, Baldassarre G. Landscape of CDKN1B mutations in luminal breast cancer and other hormone-driven human tumors. Front Endocrinol (Lausanne). 2018;9:393.PubMedPubMedCentralCrossRef Cusan M, Mungo G, De Marco Zompit M, Segatto I, Belletti B, Baldassarre G. Landscape of CDKN1B mutations in luminal breast cancer and other hormone-driven human tumors. Front Endocrinol (Lausanne). 2018;9:393.PubMedPubMedCentralCrossRef
25.
go back to reference Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 1998;58(10):2196–9.PubMed Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 1998;58(10):2196–9.PubMed
26.
go back to reference Wang D, Qian X, Rajaram M, Durkin ME, Lowy DR. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers. Oncotarget. 2016;7(29):45144–57.PubMedPubMedCentralCrossRef Wang D, Qian X, Rajaram M, Durkin ME, Lowy DR. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers. Oncotarget. 2016;7(29):45144–57.PubMedPubMedCentralCrossRef
27.
go back to reference Topisirovic I, Ruiz-Gutierrez M, Borden KLB. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 2004;64(23):8639–42.PubMedCrossRef Topisirovic I, Ruiz-Gutierrez M, Borden KLB. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 2004;64(23):8639–42.PubMedCrossRef
28.
go back to reference Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M, Larsson O, Alain T, Rong L, Mamane Y, Paquet M, Furic L, Topisirovic I, Shahbazian D, Livingstone M, Costa-Mattioli M, Teodoro JG, Sonenberg N. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell. 2009;16(5):439–46.PubMedCrossRef Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M, Larsson O, Alain T, Rong L, Mamane Y, Paquet M, Furic L, Topisirovic I, Shahbazian D, Livingstone M, Costa-Mattioli M, Teodoro JG, Sonenberg N. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell. 2009;16(5):439–46.PubMedCrossRef
30.
31.
32.
go back to reference Halle MK, Tangen IL, Berg HF, Hoivik EA, Mauland KK, Kusonmano K, Berg A, Hurtado A, Kalland KH, Oyan AM, Stefansson I, Vintermyr OK, Werner HM, Haldorsen IS, Trovik J, Salvesen HB, Krakstad C. HER2 expression patterns in paired primary and metastatic endometrial cancer lesions. Br J Cancer. 2018;118(3):378–87.PubMedCrossRef Halle MK, Tangen IL, Berg HF, Hoivik EA, Mauland KK, Kusonmano K, Berg A, Hurtado A, Kalland KH, Oyan AM, Stefansson I, Vintermyr OK, Werner HM, Haldorsen IS, Trovik J, Salvesen HB, Krakstad C. HER2 expression patterns in paired primary and metastatic endometrial cancer lesions. Br J Cancer. 2018;118(3):378–87.PubMedCrossRef
33.
go back to reference Unger K, Wienberg J, Riches A, Hieber L, Walch A, Brown A, O’Brien PCM, Briscoe C, Gray L, Rodriguez E, Jack G, Knijnenburg J, Tallini G, Ferguson-Smith M, Zitzelsberger H. Novel gene rearrangements in transformed breast cells identified by high-resolution breakpoint analysis of chromosomal aberrations. Endocr Relat Cancer. 2010;17(1):87–98.PubMedCrossRef Unger K, Wienberg J, Riches A, Hieber L, Walch A, Brown A, O’Brien PCM, Briscoe C, Gray L, Rodriguez E, Jack G, Knijnenburg J, Tallini G, Ferguson-Smith M, Zitzelsberger H. Novel gene rearrangements in transformed breast cells identified by high-resolution breakpoint analysis of chromosomal aberrations. Endocr Relat Cancer. 2010;17(1):87–98.PubMedCrossRef
34.
go back to reference Stepulak Andrzej, Rola Radoslaw, Polberg Krzysztof, Ikonomidou Chrysanthy. Glutamate and its receptors in cancer. J Neural Transm (Vienna). 2014;121(8):933–44.PubMedPubMedCentralCrossRef Stepulak Andrzej, Rola Radoslaw, Polberg Krzysztof, Ikonomidou Chrysanthy. Glutamate and its receptors in cancer. J Neural Transm (Vienna). 2014;121(8):933–44.PubMedPubMedCentralCrossRef
35.
go back to reference McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul. 2017;63:32–48.PubMedCrossRef McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul. 2017;63:32–48.PubMedCrossRef
36.
go back to reference Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15(5):276–89.PubMedCrossRef Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15(5):276–89.PubMedCrossRef
38.
go back to reference da Cunha Colombo Bonadio RR, Fogace RN, Miranda VC, del Pilar Estevez Diz M. Homologous recombination deficiency in ovarian cancer:a review of its epidemiology and management. Clinics. 2018;73(suppl 1):e450. da Cunha Colombo Bonadio RR, Fogace RN, Miranda VC, del Pilar Estevez Diz M. Homologous recombination deficiency in ovarian cancer:a review of its epidemiology and management. Clinics. 2018;73(suppl 1):e450.
Metadata
Title
Prognostic value of an autophagy-related gene expression signature for endometrial cancer patients
Authors
Hui Wang
Xiaoling Ma
Jinhui Liu
Yicong Wan
Yi Jiang
Yankai Xia
Wenjun Cheng
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01413-6

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine