Skip to main content
Top
Published in: Journal of Digital Imaging 6/2017

01-12-2017

Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device

Authors: Joseph Holub, Eliot Winer

Published in: Journal of Imaging Informatics in Medicine | Issue 6/2017

Login to get access

Abstract

Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7” iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.
Literature
8.
go back to reference Moller T, Machiraju R, Mueller K, Yagel R: Classification and local error estimation of interpolation and derivative filters for volume rendering, in: Proc. 1996 Symp. Vol. Vis., San Fransisco, CA, 1996: pp. 71–78. doi:10.1109/SVV.1996.558045. Moller T, Machiraju R, Mueller K, Yagel R: Classification and local error estimation of interpolation and derivative filters for volume rendering, in: Proc. 1996 Symp. Vol. Vis., San Fransisco, CA, 1996: pp. 71–78. doi:10.​1109/​SVV.​1996.​558045.
9.
go back to reference Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L: The VolumePro Real-Time Ray-casting System, in: Siggraph 1999, Comput. Graph. Proceedings, 1999: pp. 251–260. doi:10.1145/311535.311563. Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L: The VolumePro Real-Time Ray-casting System, in: Siggraph 1999, Comput. Graph. Proceedings, 1999: pp. 251–260. doi:10.​1145/​311535.​311563.
10.
go back to reference Wu Y, Bhatia V, Lauer H, Seiler L: Shear-image order ray casting volume rendering, in: Proc. 2003 Symp. Interact. 3D Graph. - SI3D ‘03, 2003: pp. 152–162. doi:10.1145/641508.641510. Wu Y, Bhatia V, Lauer H, Seiler L: Shear-image order ray casting volume rendering, in: Proc. 2003 Symp. Interact. 3D Graph. - SI3D ‘03, 2003: pp. 152–162. doi:10.​1145/​641508.​641510.
11.
go back to reference Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T: Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization, in: Proc. ACM SIGGRAPH/EUROGRAPHICS Work. Graph. Hardw., 2000: pp. 109–118. doi:10.1145/346876.348238. Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T: Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization, in: Proc. ACM SIGGRAPH/EUROGRAPHICS Work. Graph. Hardw., 2000: pp. 109–118. doi:10.​1145/​346876.​348238.
12.
go back to reference Engel K, Kraus M, Ertl T: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading, in: Proc. ACM SIGGRAPH/EUROGRAPHICS Work. Graph. Hardw., 2001: pp. 9–16. doi:10.1145/383507.383515. Engel K, Kraus M, Ertl T: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading, in: Proc. ACM SIGGRAPH/EUROGRAPHICS Work. Graph. Hardw., 2001: pp. 9–16. doi:10.​1145/​383507.​383515.
16.
go back to reference Kaufman A, Mueller K: Overview of volume rendering, in: Vis. Handb., 1st ed., Elsevier Inc., Amsterdam, 2005: pp. 127–174. Kaufman A, Mueller K: Overview of volume rendering, in: Vis. Handb., 1st ed., Elsevier Inc., Amsterdam, 2005: pp. 127–174.
17.
go back to reference Lichtenbelt B, Crane R, Naqvi S: Introduction to volume rendering. Upper Saddle River, NJ: Prentice-Hall, Inc., 1998 Lichtenbelt B, Crane R, Naqvi S: Introduction to volume rendering. Upper Saddle River, NJ: Prentice-Hall, Inc., 1998
20.
go back to reference He T, Hong L, Kaufman A, Pfister H: Generation of transfer functions with stochastic search techniques, in: Proc. 7th Conf. Vis. ‘96, San Fransisco, CA, 1996: pp. 227–234. doi:10.1109/VISUAL.1996.568113. He T, Hong L, Kaufman A, Pfister H: Generation of transfer functions with stochastic search techniques, in: Proc. 7th Conf. Vis. ‘96, San Fransisco, CA, 1996: pp. 227–234. doi:10.​1109/​VISUAL.​1996.​568113.
21.
go back to reference INMOS: Graphics Databook, 2nd edition. Melksham, Wiltshire: Redwood Press Limited, 1990 INMOS: Graphics Databook, 2nd edition. Melksham, Wiltshire: Redwood Press Limited, 1990
22.
28.
go back to reference Ferre M, Puig A, Tost D: A framework for fusion methods and rendering techniques of multimodal volume data. Comput Animat Virtual Worlds 15:63–77, 2004. doi: 10.1002/cav.1 CrossRef Ferre M, Puig A, Tost D: A framework for fusion methods and rendering techniques of multimodal volume data. Comput Animat Virtual Worlds 15:63–77, 2004. doi: 10.​1002/​cav.​1 CrossRef
29.
go back to reference Ferré M, Puig A, Tost D: Rendering Techniques for Multimodal Data, in: Proc. SIACG 2002 1st Ibero-American Symp. Comput. Graph., 2002: pp. 305–313 Ferré M, Puig A, Tost D: Rendering Techniques for Multimodal Data, in: Proc. SIACG 2002 1st Ibero-American Symp. Comput. Graph., 2002: pp. 305–313
30.
31.
go back to reference Noon C, Foo E, Winer E: Interactive GPU volume raycasting in a clustered graphics environment. Med Imaging 2012 Image-Guided Proced Robot Interv Model 8316:1–9, 2012. doi: 10.1117/12.911646 Noon C, Foo E, Winer E: Interactive GPU volume raycasting in a clustered graphics environment. Med Imaging 2012 Image-Guided Proced Robot Interv Model 8316:1–9, 2012. doi: 10.​1117/​12.​911646
32.
go back to reference Van Gelder A, Kim K: Direct volume rendering with shading via three-dimensional textures, in: Proc. 1996 Symp. Vol. Vis., Acm, San Fransisco, CA, 1996: p. 23–30,. doi:10.1109/SVV.1996.558039. Van Gelder A, Kim K: Direct volume rendering with shading via three-dimensional textures, in: Proc. 1996 Symp. Vol. Vis., Acm, San Fransisco, CA, 1996: p. 23–30,. doi:10.​1109/​SVV.​1996.​558039.
33.
go back to reference DeGusta M: Are Smart Phones Spreading Faster than Any Technology in Human History?, MIT Technol. Rev. (2012) DeGusta M: Are Smart Phones Spreading Faster than Any Technology in Human History?, MIT Technol. Rev. (2012)
34.
go back to reference Noon CJ: A Volume Rendering Engine for Desktops, Laptops, Mobile Devices and Immersive Virtual Reality Systems using GPU-Based Volume Raycasting by, Iowa State University, 2012 Noon CJ: A Volume Rendering Engine for Desktops, Laptops, Mobile Devices and Immersive Virtual Reality Systems using GPU-Based Volume Raycasting by, Iowa State University, 2012
38.
go back to reference Noon C, Holub J, Winer E: Real-time volume rendering of digital medical images on an iOS device, in: C.G.M. Snoek, L.S. Kennedy, R. Creutzburg, D. Akopian, D. Wüller, K.J. Matherson, et al. (Eds.), IS&T/SPIE Electron. Imaging. Int. Soc. Opt. Photonics, 2013. doi:10.1117/12.2005335 Noon C, Holub J, Winer E: Real-time volume rendering of digital medical images on an iOS device, in: C.G.M. Snoek, L.S. Kennedy, R. Creutzburg, D. Akopian, D. Wüller, K.J. Matherson, et al. (Eds.), IS&T/SPIE Electron. Imaging. Int. Soc. Opt. Photonics, 2013. doi:10.​1117/​12.​2005335
40.
go back to reference Miller RB, Response time in man-computer conversational transactions, Proc. December 9–11, 1968, Fall Jt. Comput. Conf. Part I. (1968) 267–277. doi:10.1145/1476589.1476628. Miller RB, Response time in man-computer conversational transactions, Proc. December 9–11, 1968, Fall Jt. Comput. Conf. Part I. (1968) 267–277. doi:10.​1145/​1476589.​1476628.
41.
go back to reference Holub J, Winer E, Visualizing fMRI data using volume rendering in Virtual Reality Joseph, in: Interservice/Industry Training, Simulation, Educ. Conf., Orlando, FL, 2015: pp. 1–11. Holub J, Winer E, Visualizing fMRI data using volume rendering in Virtual Reality Joseph, in: Interservice/Industry Training, Simulation, Educ. Conf., Orlando, FL, 2015: pp. 1–11.
Metadata
Title
Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device
Authors
Joseph Holub
Eliot Winer
Publication date
01-12-2017
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 6/2017
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-9986-1

Other articles of this Issue 6/2017

Journal of Digital Imaging 6/2017 Go to the issue