Skip to main content
Top
Published in: BMC Gastroenterology 1/2023

Open Access 01-12-2023 | Empagliflozin | Research

Biochemical and histopathological evidence for beneficial effects of Empagliflozin pretreatment on acetic acid-induced colitis in rats

Authors: Fereshteh Nazari-Khanamiri, Abbas Jafari, Zeinab Esmaeilzadeh, Morteza Ghasemnejad-Berenji

Published in: BMC Gastroenterology | Issue 1/2023

Login to get access

Abstract

Background

Ulcerative Colitis (UC) is a disorder which oxidative stress plays a critical role in its pathogenesis. Empagliflozin (EMPA) is a sodium-glucose cotransporter-2 (SGLT2) inhibitor that has been shown to have anti-inflammatory and antioxidative effects. The aim of this study was to investigate the protective effects of EMPA on acetic acid (AA) induced colitis in rats.

Methods

A total of twenty-four rats were divided into four groups (six animals in each group) as follows: (1) Control group; (2) acetic acid (AA)-induced colitis group (AA); (3) EMPA treatment group (AA + EMPA); (4) Dexamethasone (Dexa) treatment group (AA + Dexa). Animals in pre-treatment groups received EMPA (10 mg/kg, i.p.) or dexamethasone (4 mg/kg, i.p. as reference drug) for four consecutive days before induction of colitis by intra-rectal acetic acid (4% v/v) administration. Twenty-four hours after AA administration, rats were sacrificed and the colon tissues were removed for histopathological and biochemical evaluations.

Results

Pretreatment with EMPA significantly decreased colon weight/length ratio (81.00 ± 5.28 mg/cm vs. 108.80 ± 5.51 mg/cm) as well as, macroscopic (2.50 ± 0.57 vs. 3.75 ± 0.25) and histological scores (3.3 ± 0.14 vs. 1.98 ± 0.14) compared to the AA-induced colitis group (p < 0.01). Pretreatment with EMPA significantly reduced malondialdehyde (MDA) (324.0 ± 15.93 vs. 476.7 ± 32.26 nmol/mg p < 0.001) and increased glutathione level (117.5 ± 4.48 vs. 94.38 ± 3.950 µmol/mg, p < 0.01) in comparison to the AA-induced colitis group. Furthermore, a significant increase in catalase (44.60 ± 4.02 vs.14.59 ± 2.03 U/mg, P < 0.01), superoxide dismutase (283.9 ± 18.11 vs. 156.4 ± 7.92 U/mg, p < 0.001), and glutathione peroxidase (10.38 ± 1.45 vs. 2.508 ± 0.37, p < 0.01) activities were observed by EMPA pretreatment when compared to the AA-induced colitis group. These results were in line with those of the reference drug.

Conclusions

It is concluded that EMPA could effectively reduce the severity of tissue injury in experimental colitis. This protective effect may be related to the antioxidative effects of EMPA drug.
Literature
1.
go back to reference Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, et al. A comprehensive review and update on ulcerative colitis. Dis Mon. 2019;65(12):100851.CrossRefPubMed Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, et al. A comprehensive review and update on ulcerative colitis. Dis Mon. 2019;65(12):100851.CrossRefPubMed
2.
go back to reference Bamias G, Kaltsa G, Ladas SD. Cytokines in the pathogenesis of ulcerative colitis. Discov Med. 2011;11(60):459–67.PubMed Bamias G, Kaltsa G, Ladas SD. Cytokines in the pathogenesis of ulcerative colitis. Discov Med. 2011;11(60):459–67.PubMed
3.
go back to reference Goyal N, Rana A, Ahlawat A, Bijjem KRV, Kumar P. Animal models of inflammatory bowel disease: a review. Inflammopharmacology. 2014;22(4):219–33.CrossRefPubMed Goyal N, Rana A, Ahlawat A, Bijjem KRV, Kumar P. Animal models of inflammatory bowel disease: a review. Inflammopharmacology. 2014;22(4):219–33.CrossRefPubMed
4.
go back to reference Rashidian A, Roohi P, Mehrzadi S, Ghannadi AR, Minaiyan M. Protective effect of Ocimum basilicum essential oil against acetic acid–induced colitis in rats. J evidence-based Complement Altern Med. 2016;21(4):NP36–NP42.CrossRef Rashidian A, Roohi P, Mehrzadi S, Ghannadi AR, Minaiyan M. Protective effect of Ocimum basilicum essential oil against acetic acid–induced colitis in rats. J evidence-based Complement Altern Med. 2016;21(4):NP36–NP42.CrossRef
5.
go back to reference El-Akabawy G, El-Sherif NM. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother. 2019;111:841–51.CrossRefPubMed El-Akabawy G, El-Sherif NM. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother. 2019;111:841–51.CrossRefPubMed
6.
go back to reference Bastaki S, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem. 2021;476(9):3497–512.CrossRefPubMed Bastaki S, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem. 2021;476(9):3497–512.CrossRefPubMed
8.
go back to reference Filippatos T, Tsimihodimos V, Elisaf M. Mechanisms of blood pressure reduction with sodium-glucose co-transporter 2 (SGLT2) inhibitors. Expert Opin Pharmacother. 2016;17(12):1581–3.CrossRefPubMed Filippatos T, Tsimihodimos V, Elisaf M. Mechanisms of blood pressure reduction with sodium-glucose co-transporter 2 (SGLT2) inhibitors. Expert Opin Pharmacother. 2016;17(12):1581–3.CrossRefPubMed
9.
go back to reference Liakos A, Karagiannis T, Athanasiadou E, Sarigianni M, Mainou M, Papatheodorou K, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metabolism. 2014;16(10):984–93.CrossRef Liakos A, Karagiannis T, Athanasiadou E, Sarigianni M, Mainou M, Papatheodorou K, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metabolism. 2014;16(10):984–93.CrossRef
10.
go back to reference Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Reviews Cardiol. 2020;17(12):761–72.CrossRef Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Reviews Cardiol. 2020;17(12):761–72.CrossRef
11.
go back to reference Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovasc Diabetol. 2020;19(1):1–10.CrossRef Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovasc Diabetol. 2020;19(1):1–10.CrossRef
12.
go back to reference Amin EF, Rifaai RA, Abdel-latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. Fundam Clin Pharmacol. 2020;34(5):548–58.CrossRefPubMed Amin EF, Rifaai RA, Abdel-latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. Fundam Clin Pharmacol. 2020;34(5):548–58.CrossRefPubMed
13.
go back to reference Tian G, Yu Y, Deng H, Yang L, Shi X, Yu B. Empagliflozin alleviates ethanol-induced cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. Clin Exp Pharmacol Physiol. 2021;48(6):837–45.CrossRefPubMed Tian G, Yu Y, Deng H, Yang L, Shi X, Yu B. Empagliflozin alleviates ethanol-induced cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. Clin Exp Pharmacol Physiol. 2021;48(6):837–45.CrossRefPubMed
14.
go back to reference Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Heart Fail Rev. 2020;25(6):899–905.CrossRefPubMed Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Heart Fail Rev. 2020;25(6):899–905.CrossRefPubMed
15.
go back to reference Cheng STW, Chen L, Li SYT, Mayoux E, Leung PS. The effects of empagliflozin, an SGLT2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLoS ONE. 2016;11(1):e0147391.CrossRefPubMedPubMedCentral Cheng STW, Chen L, Li SYT, Mayoux E, Leung PS. The effects of empagliflozin, an SGLT2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLoS ONE. 2016;11(1):e0147391.CrossRefPubMedPubMedCentral
16.
go back to reference Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9(11):e112394.CrossRefPubMedPubMedCentral Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9(11):e112394.CrossRefPubMedPubMedCentral
17.
go back to reference Abed FN, Abbas EC, Al-Khalidi HA, AlMudhafar AM, Hadi NR. Anti-inflammatory and antioxidant effect of Empagliflozin on cerebral ischemia/reperfusion injury in rat model. Eur J Mol Clin Med.7(01):2020. Abed FN, Abbas EC, Al-Khalidi HA, AlMudhafar AM, Hadi NR. Anti-inflammatory and antioxidant effect of Empagliflozin on cerebral ischemia/reperfusion injury in rat model. Eur J Mol Clin Med.7(01):2020.
18.
go back to reference Xu Q, Ming Z, Dart AM, Du XJ. Optimizing dosage of ketamine and xylazine in murine echocardiography. Clin Exp Pharmacol Physiol. 2007;34(5–6):499–507.CrossRefPubMed Xu Q, Ming Z, Dart AM, Du XJ. Optimizing dosage of ketamine and xylazine in murine echocardiography. Clin Exp Pharmacol Physiol. 2007;34(5–6):499–507.CrossRefPubMed
19.
go back to reference Mohamed D, Ahmed S, Kamal M. The role of retinoids in acute renal damage associated with acetic acid induced ulcerative colitis in adult male rats: histological and biochemical study. J Med Histol. 2019;3(1):21–35.CrossRef Mohamed D, Ahmed S, Kamal M. The role of retinoids in acute renal damage associated with acetic acid induced ulcerative colitis in adult male rats: histological and biochemical study. J Med Histol. 2019;3(1):21–35.CrossRef
20.
go back to reference Desai N, Momin M. Colon targeted bioadhesive pellets of curcumin and cyclosporine for improved management of inflammatory bowel disease. Drug Delivery and Translational Research. 2020;10(5):1288–301.CrossRefPubMed Desai N, Momin M. Colon targeted bioadhesive pellets of curcumin and cyclosporine for improved management of inflammatory bowel disease. Drug Delivery and Translational Research. 2020;10(5):1288–301.CrossRefPubMed
21.
go back to reference Bastani M, Mousavi Z, Asgarpanah J, Assar N. Biochemical and histopathological evidence for beneficial effects of Pelargonium graveolens essential oil on the rat model of inflammatory bowel disease. Res J Pharmacognosy. 2019;6(2):77–84. Bastani M, Mousavi Z, Asgarpanah J, Assar N. Biochemical and histopathological evidence for beneficial effects of Pelargonium graveolens essential oil on the rat model of inflammatory bowel disease. Res J Pharmacognosy. 2019;6(2):77–84.
22.
go back to reference Millar A, Rampton D, Chander C, Claxson A, Blades S, Coumbe A, et al. Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut. 1996;39(3):407–15.CrossRefPubMedPubMedCentral Millar A, Rampton D, Chander C, Claxson A, Blades S, Coumbe A, et al. Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut. 1996;39(3):407–15.CrossRefPubMedPubMedCentral
23.
go back to reference Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182(5):1281–90.CrossRefPubMed Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182(5):1281–90.CrossRefPubMed
24.
go back to reference Niu X, Fan T, Li W, Huang H, Zhang Y, Xing W. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicol Appl Pharmcol. 2013;267(3):256–65.CrossRef Niu X, Fan T, Li W, Huang H, Zhang Y, Xing W. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicol Appl Pharmcol. 2013;267(3):256–65.CrossRef
25.
go back to reference Ghasemnejad-Berenji M, Nemati M, Pourheydar B, Gholizadeh S, Karimipour M, Mohebbi I, et al. Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: biochemical, histological, and neurobehavioral evaluations. Chemosphere. 2021;264:128464.CrossRefPubMed Ghasemnejad-Berenji M, Nemati M, Pourheydar B, Gholizadeh S, Karimipour M, Mohebbi I, et al. Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: biochemical, histological, and neurobehavioral evaluations. Chemosphere. 2021;264:128464.CrossRefPubMed
26.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed
27.
go back to reference Jafari A, Ghasemnejad-Berenji H, Nemati M, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. Beneficial effects of memantine on ischemia/reperfusion injury following torsion/detorsion induced testicular damage in rats: improvement in histological and biochemical parameters. J Pediatr Urol. 2021;17(4):441. e1-. e7.CrossRef Jafari A, Ghasemnejad-Berenji H, Nemati M, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. Beneficial effects of memantine on ischemia/reperfusion injury following torsion/detorsion induced testicular damage in rats: improvement in histological and biochemical parameters. J Pediatr Urol. 2021;17(4):441. e1-. e7.CrossRef
28.
go back to reference Hu M-L. [41] measurement of protein thiol groups and glutathione in plasma. Methods in enzymology. 233: Elsevier; 1994. 380–5. Hu M-L. [41] measurement of protein thiol groups and glutathione in plasma. Methods in enzymology. 233: Elsevier; 1994. 380–5.
29.
go back to reference Fabia R, Willen R, Ar’Rajab A, Andersson R, Ahren B, Bengmark S. Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res. 1992;24(4):211–25.CrossRefPubMed Fabia R, Willen R, Ar’Rajab A, Andersson R, Ahren B, Bengmark S. Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res. 1992;24(4):211–25.CrossRefPubMed
30.
go back to reference Hagar HH, El Medany A, El Eter E, Arafa M. Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur J Pharmacol. 2007;554(1):69–77.CrossRefPubMed Hagar HH, El Medany A, El Eter E, Arafa M. Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur J Pharmacol. 2007;554(1):69–77.CrossRefPubMed
31.
go back to reference Rachmilewitz Do. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ. 1989;298(6666):82–6.CrossRef Rachmilewitz Do. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ. 1989;298(6666):82–6.CrossRef
32.
go back to reference Khodir AE, Atef H, Said E, ElKashef HA, Salem HA. Implication of Nrf2/HO-1 pathway in the coloprotective effect of coenzyme Q10 against experimentally induced ulcerative colitis. Inflammopharmacology. 2017;25(1):119–35.CrossRefPubMed Khodir AE, Atef H, Said E, ElKashef HA, Salem HA. Implication of Nrf2/HO-1 pathway in the coloprotective effect of coenzyme Q10 against experimentally induced ulcerative colitis. Inflammopharmacology. 2017;25(1):119–35.CrossRefPubMed
33.
go back to reference Khezri MR, Varzandeh R, Ghasemnejad-Berenji M. Protective effects of metformin against aluminum phosphide-induced acute hepato-renal damage in rats: an experimental approach. Pestic Biochem Physiol. 2022;188:105258.CrossRefPubMed Khezri MR, Varzandeh R, Ghasemnejad-Berenji M. Protective effects of metformin against aluminum phosphide-induced acute hepato-renal damage in rats: an experimental approach. Pestic Biochem Physiol. 2022;188:105258.CrossRefPubMed
34.
go back to reference Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterology: WJG. 2013;19(34):5633.CrossRefPubMedCentral Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterology: WJG. 2013;19(34):5633.CrossRefPubMedCentral
35.
go back to reference Cagin YF, Parlakpinar H, Vardi N, Polat A, Atayan Y, Erdogan MA, et al. Effects of dexpanthenol on acetic acid–induced colitis in rats. Experimental and Therapeutic Medicine. 2016;12(5):2958–64.CrossRefPubMedPubMedCentral Cagin YF, Parlakpinar H, Vardi N, Polat A, Atayan Y, Erdogan MA, et al. Effects of dexpanthenol on acetic acid–induced colitis in rats. Experimental and Therapeutic Medicine. 2016;12(5):2958–64.CrossRefPubMedPubMedCentral
36.
go back to reference Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.CrossRefPubMedPubMedCentral Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.CrossRefPubMedPubMedCentral
37.
go back to reference Jafari A, Andishfar N, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji M. Gastroprotective effect of topiramate on indomethacin‐induced peptic ulcer in rats: biochemical and histological analyses. Basic & Clinical Pharmacology & Toxicology; 2022. Jafari A, Andishfar N, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji M. Gastroprotective effect of topiramate on indomethacin‐induced peptic ulcer in rats: biochemical and histological analyses. Basic & Clinical Pharmacology & Toxicology; 2022.
38.
go back to reference Amirshahrokhi K. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int Immunopharmacol. 2019;76:105884.CrossRefPubMed Amirshahrokhi K. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int Immunopharmacol. 2019;76:105884.CrossRefPubMed
39.
go back to reference Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009;157(1):1–11.CrossRefPubMed Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009;157(1):1–11.CrossRefPubMed
40.
go back to reference Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci. 2020;256:117908.CrossRefPubMed Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci. 2020;256:117908.CrossRefPubMed
41.
go back to reference Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, et al. Empagliflozin ameliorates obesity-related Cardiac Dysfunction by regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet-Induced obese mice. Diabetes. 2020;69(6):1292–305.CrossRefPubMed Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, et al. Empagliflozin ameliorates obesity-related Cardiac Dysfunction by regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet-Induced obese mice. Diabetes. 2020;69(6):1292–305.CrossRefPubMed
Metadata
Title
Biochemical and histopathological evidence for beneficial effects of Empagliflozin pretreatment on acetic acid-induced colitis in rats
Authors
Fereshteh Nazari-Khanamiri
Abbas Jafari
Zeinab Esmaeilzadeh
Morteza Ghasemnejad-Berenji
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2023
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-023-02958-2

Other articles of this Issue 1/2023

BMC Gastroenterology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine