Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Empagliflozin | Research

Ketone body levels and its associations with cardiac markers following an acute myocardial infarction: a post hoc analysis of the EMMY trial

Authors: Faisal Aziz, Norbert J. Tripolt, Peter N. Pferschy, Hubert Scharnagl, Mahmoud Abdellatif, Abderrahim Oulhaj, Martin Benedikt, Ewald Kolesnik, Dirk von Lewinski, Harald Sourij

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Background

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have been suggested to exert cardioprotective effects in patients with heart failure, possibly by improving the metabolism of ketone bodies in the myocardium.

Methods

This post hoc analysis of the EMMY trial investigated the changes in serum β-hydroxybutyrate (3-βOHB) levels after acute myocardial infarction (AMI) in response to 26-week of Empagliflozin therapy compared to the usual post-MI treatment. In addition, the association of baseline and repeated measurements of 3-βOHB with cardiac parameters and the interaction effects of Empagliflozin were investigated. Cardiac parameters included N-terminal pro-B-type natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF), left ventricle end-systolic volume (LVESV), left ventricle end-diastolic volume (LVEDV), and left ventricular filling pressure (E/é ratio).

Results

The mean 3-βOHB levels increased from baseline (46.2 ± 3.0 vs. 51.7 ± 2.7) to 6 weeks (48.8 ± 2.2 vs. 42.0 ± 2.3) and 26 weeks (49.3 ± 2.2 vs. 35.8 ± 1.9) in the Empagliflozin group compared to a consistent decline in placebo over 26 weeks (pinteraction < 0.001). Baseline and longitudinal measurements of 3-βOHB were not significantly associated with NT-proBNP and E/é ratio. Baseline 3-βOHB value was negatively associated with LVEF (coefficient: − 0.464, 95%CI − 0.863;− 0.065, p = 0.023), while an increase in its levels over time was positively associated with LVEF (0.595, 0.156;1.035, 0.008). The baseline 3-βOHB was positively associated with LVESV (1.409, 0.186;2.632, 0.024) and LVEDV (0.640, − 1.170;− 2.449, 0.488), while an increase in its levels over time was negatively associated with these cardiac parameters (LVESV: − 2.099, − 3.443;− 0.755, 0.002; LVEDV: − 2.406, − 4.341;− 0.472, 0.015). Empagliflozin therapy appears to modify the association between 3-βOHB, LVEF (pinteraction = 0.090), LVESV (pinteraction = 0.134), and LVEDV (pinteraction = 0.168), particularly at 26 weeks; however, the results were not statistically significant.

Conclusion

This post hoc analysis showed that SGLT2i increased 3-βOHB levels after AMI compared to placebo. Higher baseline 3-βOHB levels were inversely associated with cardiac function at follow-up, whereas a sustained increase in 3-βOHB levels over time improved these markers. This highlights the importance of investigating ketone body metabolism in different post-MI phases. Although more pronounced effect of 3-βOHB on cardiac markers was observed in the SGLT2i group, further research is required to explore this interaction effect.
Literature
1.
go back to reference Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77(13):1660–9.CrossRefPubMed Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77(13):1660–9.CrossRefPubMed
2.
go back to reference Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. Myocardial ketones metabolism in heart failure. J Card Fail. 2020;26(11):998–1005.CrossRefPubMed Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. Myocardial ketones metabolism in heart failure. J Card Fail. 2020;26(11):998–1005.CrossRefPubMed
3.
go back to reference Abdul Kadir A, Clarke K, Evans RD. Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165739.CrossRefPubMed Abdul Kadir A, Clarke K, Evans RD. Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165739.CrossRefPubMed
4.
go back to reference Kolwicz SC. Ketone body metabolism in the ischemic heart. Front Cardiovasc Med. 2021;7(8):789458.CrossRef Kolwicz SC. Ketone body metabolism in the ischemic heart. Front Cardiovasc Med. 2021;7(8):789458.CrossRef
5.
go back to reference Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. Nat Cardiovasc Res. 2023;2(5):425–37.CrossRef Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. Nat Cardiovasc Res. 2023;2(5):425–37.CrossRef
7.
go back to reference Mima A. A narrative review of diabetic kidney disease: previous and current evidence-based therapeutic approaches. Adv Ther. 2022;39(8):3488–500.CrossRefPubMed Mima A. A narrative review of diabetic kidney disease: previous and current evidence-based therapeutic approaches. Adv Ther. 2022;39(8):3488–500.CrossRefPubMed
8.
go back to reference Mima A. Sodium-glucose cotransporter 2 inhibitors in patients with non-diabetic chronic kidney disease. Adv Ther. 2021;38(5):2201–12.CrossRefPubMed Mima A. Sodium-glucose cotransporter 2 inhibitors in patients with non-diabetic chronic kidney disease. Adv Ther. 2021;38(5):2201–12.CrossRefPubMed
9.
go back to reference Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. J Diabetes Complicat. 2018;32(7):720–5.CrossRef Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. J Diabetes Complicat. 2018;32(7):720–5.CrossRef
10.
go back to reference von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J. 2022;43(41):4421–32.CrossRef von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J. 2022;43(41):4421–32.CrossRef
11.
go back to reference Benedikt M, Kolesnik E, Sourij H, von Lewinski D. SGLT2 inhibition in acute myocardial infarction—a comprehensive review. RCM. 2023;24(2):32. Benedikt M, Kolesnik E, Sourij H, von Lewinski D. SGLT2 inhibition in acute myocardial infarction—a comprehensive review. RCM. 2023;24(2):32.
12.
go back to reference Kwon O, Myong J, Lee Y, Choi Y, Yi JE, Seo SM, et al. Sodium-glucose cotransporter-2 inhibitors after acute myocardial infarction in patients with type 2 diabetes: a population-based investigation. J Am Heart Assoc. 2023;12(14): e027824.CrossRefPubMedPubMedCentral Kwon O, Myong J, Lee Y, Choi Y, Yi JE, Seo SM, et al. Sodium-glucose cotransporter-2 inhibitors after acute myocardial infarction in patients with type 2 diabetes: a population-based investigation. J Am Heart Assoc. 2023;12(14): e027824.CrossRefPubMedPubMedCentral
13.
go back to reference James S, Erlinge D, Storey RF, McGuire DK, de Belder M, Eriksson N, et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid. 2024;3(2):EVIDoa2300286.CrossRefPubMed James S, Erlinge D, Storey RF, McGuire DK, de Belder M, Eriksson N, et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid. 2024;3(2):EVIDoa2300286.CrossRefPubMed
14.
go back to reference Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMed Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMed
15.
go back to reference von Lewinski D, Kolesnik E, Aziz F, Benedikt M, Tripolt NJ, Wallner M, et al. Timing of SGLT2i initiation after acute myocardial infarction. Cardiovasc Diabetol. 2023;22(1):269.CrossRef von Lewinski D, Kolesnik E, Aziz F, Benedikt M, Tripolt NJ, Wallner M, et al. Timing of SGLT2i initiation after acute myocardial infarction. Cardiovasc Diabetol. 2023;22(1):269.CrossRef
16.
go back to reference Santos-Gallego CG, Requena-Ibáñez JA, Picatoste B, Fardman B, Ishikawa K, Mazurek R, et al. Cardioprotective effect of empagliflozin and circulating ketone bodies during acute myocardial infarction. Circ Cardiovasc Imagin. 2023;16(4): e015298.CrossRef Santos-Gallego CG, Requena-Ibáñez JA, Picatoste B, Fardman B, Ishikawa K, Mazurek R, et al. Cardioprotective effect of empagliflozin and circulating ketone bodies during acute myocardial infarction. Circ Cardiovasc Imagin. 2023;16(4): e015298.CrossRef
17.
go back to reference Oshima H, Miki T, Kuno A, Mizuno M, Sato T, Tanno M, et al. Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther. 2019;368(3):524–34.CrossRefPubMed Oshima H, Miki T, Kuno A, Mizuno M, Sato T, Tanno M, et al. Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther. 2019;368(3):524–34.CrossRefPubMed
18.
go back to reference Gormsen LC, Svart M, Thomsen HH, Søndergaard E, Vendelbo MH, Christensen N, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017;6(3): e005066.CrossRefPubMedPubMedCentral Gormsen LC, Svart M, Thomsen HH, Søndergaard E, Vendelbo MH, Christensen N, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017;6(3): e005066.CrossRefPubMedPubMedCentral
19.
go back to reference Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a ‘thrifty substrate’ hypothesis. Diabetes Care. 2016;39(7):1108–14.CrossRefPubMed Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a ‘thrifty substrate’ hypothesis. Diabetes Care. 2016;39(7):1108–14.CrossRefPubMed
20.
go back to reference Nishimura R, Tanaka Y, Koiwai K, Ishida K, Salsali A, Kaspers S, et al. Effect of Empagliflozin on free fatty acids and ketone bodies in Japanese patients with type 2 diabetes mellitus: a randomized controlled trial. Adv Ther. 2019;36(10):2769–82.CrossRefPubMed Nishimura R, Tanaka Y, Koiwai K, Ishida K, Salsali A, Kaspers S, et al. Effect of Empagliflozin on free fatty acids and ketone bodies in Japanese patients with type 2 diabetes mellitus: a randomized controlled trial. Adv Ther. 2019;36(10):2769–82.CrossRefPubMed
21.
go back to reference de Koning MSLY, Westenbrink BD, Assa S, Garcia E, Connelly MA, van Veldhuisen DJ, et al. Association of circulating ketone bodies with functional outcomes after st-segment elevation myocardial infarction. J Am Coll Cardiol. 2021;78(14):1421–32.CrossRefPubMed de Koning MSLY, Westenbrink BD, Assa S, Garcia E, Connelly MA, van Veldhuisen DJ, et al. Association of circulating ketone bodies with functional outcomes after st-segment elevation myocardial infarction. J Am Coll Cardiol. 2021;78(14):1421–32.CrossRefPubMed
22.
go back to reference Yurista S, Welsh A, Jiang W, Eder R, Chen S, Foster A, et al. Abstract 12050: ketone ester supplementation reduces cardiac inflammation and enhances cardiac energetics in acute myocardial infarction. Circulation. 2022;146(Suppl_1):A12050–A12050.CrossRef Yurista S, Welsh A, Jiang W, Eder R, Chen S, Foster A, et al. Abstract 12050: ketone ester supplementation reduces cardiac inflammation and enhances cardiac energetics in acute myocardial infarction. Circulation. 2022;146(Suppl_1):A12050–A12050.CrossRef
23.
go back to reference Yurista SR, Eder RA, Welsh A, Jiang W, Chen S, Foster AN, et al. Ketone ester supplementation suppresses cardiac inflammation and improves cardiac energetics in a swine model of acute myocardial infarction. Metabolism. 2023;145:155608.CrossRefPubMed Yurista SR, Eder RA, Welsh A, Jiang W, Chen S, Foster AN, et al. Ketone ester supplementation suppresses cardiac inflammation and improves cardiac energetics in a swine model of acute myocardial infarction. Metabolism. 2023;145:155608.CrossRefPubMed
24.
go back to reference Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. Am Heart J. 2020;221:39–47.CrossRefPubMed Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. Am Heart J. 2020;221:39–47.CrossRefPubMed
25.
go back to reference Di Marino S, Viceconte N, Lembo A, Summa V, Tanzilli G, Raparelli V, et al. Early metabolic response to acute myocardial ischaemia in patients undergoing elective coronary angioplasty. Open Heart. 2018;5(1): e000709.CrossRefPubMedPubMedCentral Di Marino S, Viceconte N, Lembo A, Summa V, Tanzilli G, Raparelli V, et al. Early metabolic response to acute myocardial ischaemia in patients undergoing elective coronary angioplasty. Open Heart. 2018;5(1): e000709.CrossRefPubMedPubMedCentral
26.
go back to reference Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62.CrossRefPubMedPubMedCentral Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62.CrossRefPubMedPubMedCentral
27.
go back to reference Schugar RC, Moll AR, André d’Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3(7):754–69.CrossRefPubMedPubMedCentral Schugar RC, Moll AR, André d’Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3(7):754–69.CrossRefPubMedPubMedCentral
29.
go back to reference Kashiwagi Y, Nagoshi T, Inoue Y, Tanaka Y, Takahashi H, Oi Y, et al. Close linkage between blood total ketone body levels and B-type natriuretic peptide levels in patients with cardiovascular disorders. Sci Rep. 2021;11(1):6498.CrossRefPubMedPubMedCentral Kashiwagi Y, Nagoshi T, Inoue Y, Tanaka Y, Takahashi H, Oi Y, et al. Close linkage between blood total ketone body levels and B-type natriuretic peptide levels in patients with cardiovascular disorders. Sci Rep. 2021;11(1):6498.CrossRefPubMedPubMedCentral
30.
go back to reference Homilius C, Seefeldt JM, Axelsen JS, Pedersen TM, Sørensen TM, Nielsen R, et al. Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility. Basic Res Cardiol. 2023;118(1):37.CrossRefPubMedPubMedCentral Homilius C, Seefeldt JM, Axelsen JS, Pedersen TM, Sørensen TM, Nielsen R, et al. Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility. Basic Res Cardiol. 2023;118(1):37.CrossRefPubMedPubMedCentral
31.
go back to reference Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139(18):2129–41.CrossRefPubMedPubMedCentral Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139(18):2129–41.CrossRefPubMedPubMedCentral
32.
go back to reference Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4(4): e124079.CrossRefPubMedPubMedCentral Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4(4): e124079.CrossRefPubMedPubMedCentral
Metadata
Title
Ketone body levels and its associations with cardiac markers following an acute myocardial infarction: a post hoc analysis of the EMMY trial
Authors
Faisal Aziz
Norbert J. Tripolt
Peter N. Pferschy
Hubert Scharnagl
Mahmoud Abdellatif
Abderrahim Oulhaj
Martin Benedikt
Ewald Kolesnik
Dirk von Lewinski
Harald Sourij
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02221-2

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.