Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

Authors: Benedetta Cesqui, Peppino Tropea, Silvestro Micera, Hermano Igo Krebs

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane.

Methods

Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE).

Results

Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient.

Conclusions

The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment.
Appendix
Available only for authorised users
Literature
1.
go back to reference VA/DoD clinical practice guideline for the management of stroke rehabilitation In The Office of Quality and Performance, VA & Quality Management Division, United States Army MEDCOM. Washington, DC: Dept of Veterans Affairs and Dept of Defense; 2010. VA/DoD clinical practice guideline for the management of stroke rehabilitation In The Office of Quality and Performance, VA & Quality Management Division, United States Army MEDCOM. Washington, DC: Dept of Veterans Affairs and Dept of Defense; 2010.
2.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 2008,22(1):50-63.CrossRefPubMed Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 2008,22(1):50-63.CrossRefPubMed
3.
go back to reference Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 2006, 3: 12.PubMedCentralCrossRefPubMed Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 2006, 3: 12.PubMedCentralCrossRefPubMed
4.
go back to reference Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008,22(2):111-121.PubMedCentralCrossRefPubMed Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008,22(2):111-121.PubMedCentralCrossRefPubMed
5.
go back to reference Posteraro F, Mazzoleni S, Aliboni S, Cesqui B, Battaglia A, Carrozza MC, Dario P, Micera S: Upper limb spasticity reduction following active training: a robot-mediated study in patients with chronic hemiparesis. J Rehabil Med 2010,42(3):279-281.CrossRefPubMed Posteraro F, Mazzoleni S, Aliboni S, Cesqui B, Battaglia A, Carrozza MC, Dario P, Micera S: Upper limb spasticity reduction following active training: a robot-mediated study in patients with chronic hemiparesis. J Rehabil Med 2010,42(3):279-281.CrossRefPubMed
6.
go back to reference Posteraro F, Mazzoleni S, Aliboni S, Cesqui B, Battaglia A, Dario P, Micera S: Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury. J Rehabil Med 2009,41(12):976-980.CrossRefPubMed Posteraro F, Mazzoleni S, Aliboni S, Cesqui B, Battaglia A, Dario P, Micera S: Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury. J Rehabil Med 2009,41(12):976-980.CrossRefPubMed
7.
go back to reference Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G: Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil 2007, 4: 3.PubMedCentralCrossRefPubMed Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G: Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil 2007, 4: 3.PubMedCentralCrossRefPubMed
8.
go back to reference Hallet M: Plasticity in the human motor system. Neuroscientist 1999, 5: 324-332.CrossRef Hallet M: Plasticity in the human motor system. Neuroscientist 1999, 5: 324-332.CrossRef
9.
go back to reference Johnson MJ: Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil 2006, 3: 29.PubMedCentralCrossRefPubMed Johnson MJ: Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil 2006, 3: 29.PubMedCentralCrossRefPubMed
10.
go back to reference Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009, 6: 20.PubMedCentralCrossRefPubMed Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009, 6: 20.PubMedCentralCrossRefPubMed
11.
go back to reference Basmajian JV, Gowland CA, Finlayson MA, Hall AL, Swanson LR, Stratford PW, Trotter JE, Brandstater ME: Stroke treatment: comparison of integrated behavioral-physical therapy vs traditional physical therapy programs. Arch Phys Med Rehabil 1987,68(5 Pt 1):267-272.PubMed Basmajian JV, Gowland CA, Finlayson MA, Hall AL, Swanson LR, Stratford PW, Trotter JE, Brandstater ME: Stroke treatment: comparison of integrated behavioral-physical therapy vs traditional physical therapy programs. Arch Phys Med Rehabil 1987,68(5 Pt 1):267-272.PubMed
12.
go back to reference Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):325-334.PubMedCentralCrossRefPubMed Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):325-334.PubMedCentralCrossRefPubMed
13.
go back to reference Akazawa K, Okuno R: Estimating torque- angle relations of Human elbowJoint in isovelocity movements. IEICE Trans inf & syst 2006,E89(11):2802-2810.CrossRef Akazawa K, Okuno R: Estimating torque- angle relations of Human elbowJoint in isovelocity movements. IEICE Trans inf & syst 2006,E89(11):2802-2810.CrossRef
14.
go back to reference Bizzi E, Accornero N, Chapple W, Hogan N: Posture control and trajectory formation during arm movement. J Neurosci 1984,4(11):2738-2744.PubMed Bizzi E, Accornero N, Chapple W, Hogan N: Posture control and trajectory formation during arm movement. J Neurosci 1984,4(11):2738-2744.PubMed
15.
go back to reference Choi C, Kim J: A real time EMG-based assistive Computer Interface for Upper Limb Disabled. In IEEE 10th International Conference on Rehabilitation Robotics, 2007 ICORR 2007: 13–15 June 2007. Noordwijk -The Netherlands; 2007:459-462.CrossRef Choi C, Kim J: A real time EMG-based assistive Computer Interface for Upper Limb Disabled. In IEEE 10th International Conference on Rehabilitation Robotics, 2007 ICORR 2007: 13–15 June 2007. Noordwijk -The Netherlands; 2007:459-462.CrossRef
16.
go back to reference Graupe D, Salahi J, Kohn KH: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J Biomed Eng 1982,4(1):17-22.CrossRefPubMed Graupe D, Salahi J, Kohn KH: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J Biomed Eng 1982,4(1):17-22.CrossRefPubMed
17.
go back to reference Karlik B, Tokhi MO, Alci M: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng 2003,50(11):1255-1261.CrossRefPubMed Karlik B, Tokhi MO, Alci M: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng 2003,50(11):1255-1261.CrossRefPubMed
18.
go back to reference Wyss UP, Pollak VA: Surface electromyogram (EMG)/muscle force: a muscle model based on RMG peaks. Eng Med 1984,13(1):27-33.CrossRefPubMed Wyss UP, Pollak VA: Surface electromyogram (EMG)/muscle force: a muscle model based on RMG peaks. Eng Med 1984,13(1):27-33.CrossRefPubMed
19.
go back to reference Zecca M, Micera S, Carrozza MC, Dario P: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 2002,30(4–6):459-485.CrossRefPubMed Zecca M, Micera S, Carrozza MC, Dario P: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 2002,30(4–6):459-485.CrossRefPubMed
20.
go back to reference d'Avella A, Portone A, Fernandez L, Lacquaniti F: Control of fast-reaching movements by muscle synergy combinations. J Neurosci 2006,26(30):7791-7810.CrossRefPubMed d'Avella A, Portone A, Fernandez L, Lacquaniti F: Control of fast-reaching movements by muscle synergy combinations. J Neurosci 2006,26(30):7791-7810.CrossRefPubMed
21.
go back to reference Flanders M: Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 1991,11(9):2680-2693.PubMed Flanders M: Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 1991,11(9):2680-2693.PubMed
22.
go back to reference Flanders M, Herrmann U: Two components of muscle activation: scaling with the speed of arm movement. J Neurophysiol 1992,67(4):931-943.PubMed Flanders M, Herrmann U: Two components of muscle activation: scaling with the speed of arm movement. J Neurophysiol 1992,67(4):931-943.PubMed
23.
go back to reference Georgopoulos A, Cammiti R, Kalaska J, Massey J: Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain Res 1983, 7: 327-336.CrossRef Georgopoulos A, Cammiti R, Kalaska J, Massey J: Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain Res 1983, 7: 327-336.CrossRef
24.
go back to reference Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009,106(46):19563-19568.PubMedCentralCrossRefPubMed Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009,106(46):19563-19568.PubMedCentralCrossRefPubMed
25.
go back to reference Armagan O, Tascioglu F, Oner C: Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am J Phys Med Rehabil 2003,82(11):856-861.CrossRefPubMed Armagan O, Tascioglu F, Oner C: Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am J Phys Med Rehabil 2003,82(11):856-861.CrossRefPubMed
26.
go back to reference Moreland J, Thomson MA: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther 1994,74(6):534-543. discussion 544–537PubMed Moreland J, Thomson MA: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther 1994,74(6):534-543. discussion 544–537PubMed
27.
go back to reference Prevo AJ, Visser SL, Vogelaar TW: Effect of EMG feedback on paretic muscles and abnormal co-contraction in the hemiplegic arm, compared with conventional physical therapy. Scand J Rehabil Med 1982,14(3):121-131.PubMed Prevo AJ, Visser SL, Vogelaar TW: Effect of EMG feedback on paretic muscles and abnormal co-contraction in the hemiplegic arm, compared with conventional physical therapy. Scand J Rehabil Med 1982,14(3):121-131.PubMed
28.
go back to reference Stein J, Narendran K, McBean J, Krebs K, Hughes R: Electromyography-controlled exoskeletal upper limb powered othosis for exercise training after stroke. Am J Phys Med Rehabil 2007,86(4):255-261.CrossRefPubMed Stein J, Narendran K, McBean J, Krebs K, Hughes R: Electromyography-controlled exoskeletal upper limb powered othosis for exercise training after stroke. Am J Phys Med Rehabil 2007,86(4):255-261.CrossRefPubMed
29.
go back to reference Hu XL, Tong KY, Song R, Zheng XJ, Lui KH: Robot-Assisted wrist for chronic Stroke: a comparison between electromyography (EMG) driven robot and passive motion. In Conference on Biomedical Robotics and Biomechatronics 2008. Scottsdale, AZ, USA; 2008. Hu XL, Tong KY, Song R, Zheng XJ, Lui KH: Robot-Assisted wrist for chronic Stroke: a comparison between electromyography (EMG) driven robot and passive motion. In Conference on Biomedical Robotics and Biomechatronics 2008. Scottsdale, AZ, USA; 2008.
31.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 1975,7(1):13-31.PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 1975,7(1):13-31.PubMed
32.
go back to reference Timmermans AA, Seelen HA, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 2009, 6: 1.PubMedCentralCrossRefPubMed Timmermans AA, Seelen HA, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 2009, 6: 1.PubMedCentralCrossRefPubMed
33.
go back to reference Beer RF, Dewald JP, Rymer WZ: Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res 2000,131(3):305-319.CrossRefPubMed Beer RF, Dewald JP, Rymer WZ: Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res 2000,131(3):305-319.CrossRefPubMed
34.
go back to reference Micera S, Sabatini AM, Dario P, Rossi B: A hybrid approach to EMG pattern analysis for classification of arm movements using statistical and fuzzy techniques. Med Eng Phys 1999,21(5):303-311.CrossRefPubMed Micera S, Sabatini AM, Dario P, Rossi B: A hybrid approach to EMG pattern analysis for classification of arm movements using statistical and fuzzy techniques. Med Eng Phys 1999,21(5):303-311.CrossRefPubMed
35.
go back to reference Kendall Peterson K, Kendall McCreary E: Muscels, testing and function. Baltimore: William and Wilkins; 1971. Kendall Peterson K, Kendall McCreary E: Muscels, testing and function. Baltimore: William and Wilkins; 1971.
36.
go back to reference Hargrove LJ, Englehart K, Hudgins B: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 2007,54(5):847-853.CrossRefPubMed Hargrove LJ, Englehart K, Hudgins B: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 2007,54(5):847-853.CrossRefPubMed
37.
go back to reference Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabil Eng 1995,3(4):324-333.CrossRef Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabil Eng 1995,3(4):324-333.CrossRef
38.
go back to reference Boostani R, Moradi MH: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas 2003,24(2):309-319.CrossRefPubMed Boostani R, Moradi MH: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas 2003,24(2):309-319.CrossRefPubMed
39.
go back to reference Chang CC, Lin CJ: LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2: 1-27.CrossRef Chang CC, Lin CJ: LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2: 1-27.CrossRef
40.
go back to reference Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Discov 1998, 2: 2.CrossRef Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Discov 1998, 2: 2.CrossRef
41.
go back to reference Dewald JP, Sheshadri V, Dawson ML, Beer RF: Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil 2001,8(1):1-12.CrossRefPubMed Dewald JP, Sheshadri V, Dawson ML, Beer RF: Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil 2001,8(1):1-12.CrossRefPubMed
42.
go back to reference Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe KBTNH: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots 2003,15(1):7-20.CrossRef Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe KBTNH: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots 2003,15(1):7-20.CrossRef
43.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383.CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383.CrossRefPubMed
44.
go back to reference Lee SW, Wilson KM, Lock BA, Kamper DG: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans Neural Syst Rehabil Eng 2011,19(5):558-566.PubMedCentralCrossRefPubMed Lee SW, Wilson KM, Lock BA, Kamper DG: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans Neural Syst Rehabil Eng 2011,19(5):558-566.PubMedCentralCrossRefPubMed
45.
go back to reference Ajiboye AB, Weir RF: A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):280-291.CrossRefPubMed Ajiboye AB, Weir RF: A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):280-291.CrossRefPubMed
46.
go back to reference Chang GC, Kang WJ, Luh JJ, Cheng CK, Lai JS, Chen JJ, Kuo TS: Real-time implementation of electromyogram pattern recognition as a control command of man–machine interface. Med Eng Phys 1996,18(7):529-537.CrossRefPubMed Chang GC, Kang WJ, Luh JJ, Cheng CK, Lai JS, Chen JJ, Kuo TS: Real-time implementation of electromyogram pattern recognition as a control command of man–machine interface. Med Eng Phys 1996,18(7):529-537.CrossRefPubMed
47.
go back to reference Khadivi A, Nazarpour K, Zadeh HS: SEMG classification for upper-limb prosthesis control using higher order statistics. IEEE International Conference on Acoustics, Speech, and Signal Processing ( ICASSP): 18–23 March 2005 2005, 385-388.CrossRef Khadivi A, Nazarpour K, Zadeh HS: SEMG classification for upper-limb prosthesis control using higher order statistics. IEEE International Conference on Acoustics, Speech, and Signal Processing ( ICASSP): 18–23 March 2005 2005, 385-388.CrossRef
48.
go back to reference Musampa NK, Mathieu PA, Levin MF: Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Exp Brain Res 2007,181(4):579-593.CrossRefPubMed Musampa NK, Mathieu PA, Levin MF: Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Exp Brain Res 2007,181(4):579-593.CrossRefPubMed
49.
go back to reference Cirstea MC, Levin MF: Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabil Neural Repair 2007,21(5):398-411.CrossRefPubMed Cirstea MC, Levin MF: Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabil Neural Repair 2007,21(5):398-411.CrossRefPubMed
50.
go back to reference Crow JL, Lincoln NB, Nouri FM, De Weerdt W: The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud 1989,11(4):155-160.CrossRefPubMed Crow JL, Lincoln NB, Nouri FM, De Weerdt W: The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud 1989,11(4):155-160.CrossRefPubMed
51.
go back to reference Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 1995,118(Pt 2):495-510.CrossRefPubMed Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 1995,118(Pt 2):495-510.CrossRefPubMed
52.
go back to reference Levin MF: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996,119(Pt 1):281-293.CrossRefPubMed Levin MF: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996,119(Pt 1):281-293.CrossRefPubMed
53.
go back to reference Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain 2000,123(Pt 5):940-953.CrossRefPubMed Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain 2000,123(Pt 5):940-953.CrossRefPubMed
54.
go back to reference Krakauer JW: Arm function after stroke: from physiology to recovery. Semin Neurol 2005,25(4):384-395.CrossRefPubMed Krakauer JW: Arm function after stroke: from physiology to recovery. Semin Neurol 2005,25(4):384-395.CrossRefPubMed
55.
go back to reference Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N: Movement smoothness changes during stroke recovery. J Neurosci 2002,22(18):8297-8304.PubMed Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N: Movement smoothness changes during stroke recovery. J Neurosci 2002,22(18):8297-8304.PubMed
56.
go back to reference Cirstea MC, Mitnitski AB, Feldman AG, Levin MF: Interjoint coordination dynamics during reaching in stroke. Exp Brain Res 2003,151(3):289-300.CrossRefPubMed Cirstea MC, Mitnitski AB, Feldman AG, Levin MF: Interjoint coordination dynamics during reaching in stroke. Exp Brain Res 2003,151(3):289-300.CrossRefPubMed
57.
go back to reference Winstein C, Wing AM, Whitall J: Motor control and learning principles for rehabilitation of upper limb movements after brain injury. In Handbook of Neuropsychology, Volume 9. Edited by: Grafman J, Robertson IH. Amsterdam, The Netherlands: Elsevier Science; 2003. Winstein C, Wing AM, Whitall J: Motor control and learning principles for rehabilitation of upper limb movements after brain injury. In Handbook of Neuropsychology, Volume 9. Edited by: Grafman J, Robertson IH. Amsterdam, The Netherlands: Elsevier Science; 2003.
59.
go back to reference Takeuchi N, Izumi S: Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast 2012, 2012: 359728.PubMedCentralPubMed Takeuchi N, Izumi S: Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast 2012, 2012: 359728.PubMedCentralPubMed
Metadata
Title
EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study
Authors
Benedetta Cesqui
Peppino Tropea
Silvestro Micera
Hermano Igo Krebs
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-75

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue