Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Review

Emerging roles of lipid metabolism in cancer metastasis

Authors: Xiangjian Luo, Can Cheng, Zheqiong Tan, Namei Li, Min Tang, Lifang Yang, Ya Cao

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Cancer cells frequently display fundamentally altered cellular metabolism, which provides the biochemical foundation and directly contributes to tumorigenicity and malignancy. Rewiring of metabolic programmes, such as aerobic glycolysis and increased glutamine metabolism, are crucial for cancer cells to shed from a primary tumor, overcome the nutrient and energy deficit, and eventually survive and form metastases. However, the role of lipid metabolism that confers the aggressive properties of malignant cancers remains obscure. The present review is focused on key enzymes in lipid metabolism associated with metastatic disease pathogenesis. We also address the function of an important membrane structure-lipid raft in mediating tumor aggressive progression. We enumerate and integrate these recent findings into our current understanding of lipid metabolic reprogramming in cancer metastasis accompanied by new and exciting therapeutic implications.
Literature
1.
go back to reference DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.CrossRefPubMed DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.CrossRefPubMed
2.
go back to reference Kaelin Jr WG, Thompson CB. Q&A: Cancer: clues from cell metabolism. Nature. 2010;465(7298):562–4.CrossRefPubMed Kaelin Jr WG, Thompson CB. Q&A: Cancer: clues from cell metabolism. Nature. 2010;465(7298):562–4.CrossRefPubMed
3.
go back to reference Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab. 2012;16(5):565–77.CrossRefPubMedPubMedCentral Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab. 2012;16(5):565–77.CrossRefPubMedPubMedCentral
5.
6.
go back to reference Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta. 2010;1801(3):381–91.CrossRefPubMed Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta. 2010;1801(3):381–91.CrossRefPubMed
8.
go back to reference Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.CrossRefPubMedPubMedCentral Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.CrossRefPubMedPubMedCentral
11.
go back to reference Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008;68(20):8547–54.CrossRefPubMed Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008;68(20):8547–54.CrossRefPubMed
12.
go back to reference Yancy HF, Mason JA, Peters S, Thompson 3rd CE, Littleton GK, et al. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women. J Carcinog. 2007;6:8.CrossRefPubMedPubMedCentral Yancy HF, Mason JA, Peters S, Thompson 3rd CE, Littleton GK, et al. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women. J Carcinog. 2007;6:8.CrossRefPubMedPubMedCentral
13.
go back to reference Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, et al. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res. 2002;62(9):2625–9.PubMed Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, et al. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res. 2002;62(9):2625–9.PubMed
14.
go back to reference Qian X, Hu J, Zhao J, Chen H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med. 2015;8(5):7855–60.PubMedPubMedCentral Qian X, Hu J, Zhao J, Chen H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med. 2015;8(5):7855–60.PubMedPubMedCentral
15.
go back to reference Xin M, Qiao Z, Li J, Liu J, Song S, et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget. 2016;7(28):44252.PubMedPubMedCentral Xin M, Qiao Z, Li J, Liu J, Song S, et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget. 2016;7(28):44252.PubMedPubMedCentral
16.
go back to reference Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, et al. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells. Cancer Res. 2016;76(8):2406–18.CrossRefPubMed Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, et al. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells. Cancer Res. 2016;76(8):2406–18.CrossRefPubMed
17.
18.
go back to reference Chow JD, Lawrence RT, Healy ME, Dominy JE, Liao JA, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab. 2014;3(4):419–31.CrossRefPubMedPubMedCentral Chow JD, Lawrence RT, Healy ME, Dominy JE, Liao JA, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab. 2014;3(4):419–31.CrossRefPubMedPubMedCentral
19.
go back to reference Su YW, Lin YH, Pai MH, Lo AC, Lee YC, et al. Association between phosphorylated AMP-activated protein kinase and acetyl-CoA carboxylase expression and outcome in patients with squamous cell carcinoma of the head and neck. PLoS ONE. 2014;9(4):e96183.CrossRefPubMedPubMedCentral Su YW, Lin YH, Pai MH, Lo AC, Lee YC, et al. Association between phosphorylated AMP-activated protein kinase and acetyl-CoA carboxylase expression and outcome in patients with squamous cell carcinoma of the head and neck. PLoS ONE. 2014;9(4):e96183.CrossRefPubMedPubMedCentral
20.
go back to reference Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology. 2016;63(4):1272–86.CrossRefPubMed Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology. 2016;63(4):1272–86.CrossRefPubMed
21.
go back to reference Hao Q, Li T, Zhang X, Gao P, Qiao P, et al. Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol Rep. 2014;32(6):2471–6.PubMed Hao Q, Li T, Zhang X, Gao P, Qiao P, et al. Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol Rep. 2014;32(6):2471–6.PubMed
22.
go back to reference Jiang L, Wang H, Li J, Fang X, Pan H, et al. Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci. 2014;15(7):11539–54.CrossRefPubMedPubMedCentral Jiang L, Wang H, Li J, Fang X, Pan H, et al. Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci. 2014;15(7):11539–54.CrossRefPubMedPubMedCentral
23.
go back to reference Li J, Dong L, Wei D, Wang X, Zhang S, et al. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 2014;10(2):171–80.CrossRefPubMedPubMedCentral Li J, Dong L, Wei D, Wang X, Zhang S, et al. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 2014;10(2):171–80.CrossRefPubMedPubMedCentral
24.
go back to reference Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 2016;5(7):1599–606.CrossRefPubMedPubMedCentral Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 2016;5(7):1599–606.CrossRefPubMedPubMedCentral
25.
go back to reference Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, et al. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS ONE. 2016;11(1):e0147717.CrossRefPubMedPubMedCentral Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, et al. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS ONE. 2016;11(1):e0147717.CrossRefPubMedPubMedCentral
26.
go back to reference Ahmad I, Mui E, Galbraith L, Patel R, Tan EH, et al. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc Natl Acad Sci U S A. 2016;113(29):8290–5.CrossRefPubMedPubMedCentral Ahmad I, Mui E, Galbraith L, Patel R, Tan EH, et al. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc Natl Acad Sci U S A. 2016;113(29):8290–5.CrossRefPubMedPubMedCentral
27.
go back to reference Lee HJ, Ryu JM, Jung YH, Oh SY, Lee SJ, et al. Novel Pathway for Hypoxia-Induced Proliferation and Migration in Human Mesenchymal Stem Cells: Involvement of HIF-1alpha, FASN, and mTORC1. Stem Cells. 2015;33(7):2182–95.CrossRefPubMed Lee HJ, Ryu JM, Jung YH, Oh SY, Lee SJ, et al. Novel Pathway for Hypoxia-Induced Proliferation and Migration in Human Mesenchymal Stem Cells: Involvement of HIF-1alpha, FASN, and mTORC1. Stem Cells. 2015;33(7):2182–95.CrossRefPubMed
28.
go back to reference Sounni NE, Cimino J, Blacher S, Primac I, Truong A, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 2014;20(2):280–94.CrossRefPubMed Sounni NE, Cimino J, Blacher S, Primac I, Truong A, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 2014;20(2):280–94.CrossRefPubMed
29.
go back to reference Wang J, Yu L, Schmidt RE, Su C, Huang X, et al. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun. 2005;332(3):735–42.CrossRefPubMed Wang J, Yu L, Schmidt RE, Su C, Huang X, et al. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun. 2005;332(3):735–42.CrossRefPubMed
30.
go back to reference Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis. 2010;31(9):1509–15.CrossRefPubMed Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis. 2010;31(9):1509–15.CrossRefPubMed
31.
go back to reference Wang H, Zhang Y, Lu Y, Song J, Huang M, et al. The role of stearoyl-coenzyme A desaturase 1 in clear cell renal cell carcinoma. Tumour Biol. 2016;37(1):479–89.CrossRefPubMed Wang H, Zhang Y, Lu Y, Song J, Huang M, et al. The role of stearoyl-coenzyme A desaturase 1 in clear cell renal cell carcinoma. Tumour Biol. 2016;37(1):479–89.CrossRefPubMed
33.
go back to reference Brohee L, Demine S, Willems J, Arnould T, Colige AC, et al. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6(13):11264–80.CrossRefPubMedPubMedCentral Brohee L, Demine S, Willems J, Arnould T, Colige AC, et al. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6(13):11264–80.CrossRefPubMedPubMedCentral
34.
go back to reference Bagnato C, Igal RA. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts. J Biol Chem. 2003;278(52):52203–11.CrossRefPubMed Bagnato C, Igal RA. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts. J Biol Chem. 2003;278(52):52203–11.CrossRefPubMed
35.
go back to reference Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18(7):846–56.CrossRefPubMedPubMedCentral Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18(7):846–56.CrossRefPubMedPubMedCentral
36.
go back to reference Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61.CrossRefPubMedPubMedCentral Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61.CrossRefPubMedPubMedCentral
37.
go back to reference Ma M, Bai J, Ling Y, Chang W, Xie G, et al. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep. 2016;13(3):2850–6.PubMed Ma M, Bai J, Ling Y, Chang W, Xie G, et al. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep. 2016;13(3):2850–6.PubMed
38.
go back to reference Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem. 2011;150(3):233–55.CrossRefPubMed Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem. 2011;150(3):233–55.CrossRefPubMed
39.
go back to reference Cai Q, Zhao Z, Antalis C, Yan L, Del Priore G, et al. Elevated and secreted phospholipase A(2) activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J. 2012;26(8):3306–20.CrossRefPubMedPubMedCentral Cai Q, Zhao Z, Antalis C, Yan L, Del Priore G, et al. Elevated and secreted phospholipase A(2) activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J. 2012;26(8):3306–20.CrossRefPubMedPubMedCentral
40.
go back to reference Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289(33):22557–66.CrossRefPubMedPubMedCentral Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289(33):22557–66.CrossRefPubMedPubMedCentral
41.
go back to reference Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, et al. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol. 2008;74(3):574–84.CrossRefPubMed Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, et al. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol. 2008;74(3):574–84.CrossRefPubMed
42.
go back to reference Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene. 2013;32(49):5551–62.CrossRefPubMedPubMedCentral Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene. 2013;32(49):5551–62.CrossRefPubMedPubMedCentral
43.
go back to reference Toschi A, Edelstein J, Rockwell P, Ohh M, Foster DA. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene. 2008;27(19):2746–53.CrossRefPubMed Toschi A, Edelstein J, Rockwell P, Ohh M, Foster DA. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene. 2008;27(19):2746–53.CrossRefPubMed
44.
go back to reference Park MH, Ahn BH, Hong YK, do Min S. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis. 2009;30(2):356–65.CrossRefPubMed Park MH, Ahn BH, Hong YK, do Min S. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis. 2009;30(2):356–65.CrossRefPubMed
45.
go back to reference Henkels KM, Farkaly T, Mahankali M, Segall JE, Gomez-Cambronero J. Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). J Mol Biol. 2011;408(5):850–62.CrossRefPubMedPubMedCentral Henkels KM, Farkaly T, Mahankali M, Segall JE, Gomez-Cambronero J. Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). J Mol Biol. 2011;408(5):850–62.CrossRefPubMedPubMedCentral
46.
go back to reference Ye Q, Kantonen S, Gomez-Cambronero J. Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion. J Mol Biol. 2013;425(4):755–66.CrossRefPubMed Ye Q, Kantonen S, Gomez-Cambronero J. Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion. J Mol Biol. 2013;425(4):755–66.CrossRefPubMed
47.
go back to reference Chen Q, Hongu T, Sato T, Zhang Y, Ali W, et al. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal. 2012;5(249):ra79.CrossRefPubMedPubMedCentral Chen Q, Hongu T, Sato T, Zhang Y, Ali W, et al. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal. 2012;5(249):ra79.CrossRefPubMedPubMedCentral
48.
go back to reference Su W, Chen Q, Frohman MA. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 2009;5(9):1477–86.CrossRefPubMedPubMedCentral Su W, Chen Q, Frohman MA. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 2009;5(9):1477–86.CrossRefPubMedPubMedCentral
49.
51.
go back to reference Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109–13.CrossRefPubMedPubMedCentral Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109–13.CrossRefPubMedPubMedCentral
52.
53.
go back to reference Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51.CrossRefPubMedPubMedCentral Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51.CrossRefPubMedPubMedCentral
54.
go back to reference Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000;1486(1):1–17.CrossRefPubMed Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000;1486(1):1–17.CrossRefPubMed
55.
go back to reference Ramsay RR, Zammit VA. Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med. 2004;25(5-6):475–93.CrossRefPubMed Ramsay RR, Zammit VA. Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med. 2004;25(5-6):475–93.CrossRefPubMed
56.
go back to reference Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, et al. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Rep. 2016;14(9):2154–65.CrossRefPubMedPubMedCentral Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, et al. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Rep. 2016;14(9):2154–65.CrossRefPubMedPubMedCentral
57.
go back to reference Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016:6235641.CrossRefPubMedPubMedCentral Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016:6235641.CrossRefPubMedPubMedCentral
58.
go back to reference Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12(11):741–52.CrossRefPubMed Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12(11):741–52.CrossRefPubMed
60.
go back to reference Diradourian C, Girard J, Pegorier JP. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie. 2005;87(1):33–8.CrossRefPubMed Diradourian C, Girard J, Pegorier JP. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie. 2005;87(1):33–8.CrossRefPubMed
61.
go back to reference Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.CrossRefPubMedPubMedCentral Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.CrossRefPubMedPubMedCentral
62.
go back to reference Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721–33.CrossRefPubMed Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721–33.CrossRefPubMed
63.
go back to reference Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011;30(24):4860–73.CrossRefPubMedPubMedCentral Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011;30(24):4860–73.CrossRefPubMedPubMedCentral
64.
go back to reference Gan B, Hu J, Jiang S, Liu Y, Sahin E, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468(7324):701–4.CrossRefPubMedPubMedCentral Gan B, Hu J, Jiang S, Liu Y, Sahin E, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468(7324):701–4.CrossRefPubMedPubMedCentral
65.
66.
go back to reference Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120(1):142–56.CrossRefPubMed Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120(1):142–56.CrossRefPubMed
67.
go back to reference Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22(4):547–60.CrossRefPubMedPubMedCentral Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22(4):547–60.CrossRefPubMedPubMedCentral
68.
go back to reference Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Power surge: supporting cells "fuel" cancer cell mitochondria. Cell Metab. 2012;15(1):4–5.CrossRefPubMed Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Power surge: supporting cells "fuel" cancer cell mitochondria. Cell Metab. 2012;15(1):4–5.CrossRefPubMed
69.
go back to reference Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, et al. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011;13(4):213.CrossRefPubMedPubMedCentral Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, et al. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011;13(4):213.CrossRefPubMedPubMedCentral
70.
go back to reference Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.CrossRefPubMedPubMedCentral Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.CrossRefPubMedPubMedCentral
71.
72.
73.
go back to reference Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32:257–83.CrossRefPubMed Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32:257–83.CrossRefPubMed
74.
go back to reference Kim KB, Yi JS, Nguyen N, Lee JH, Kwon YC, et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem. 2011;286(26):23093–101.CrossRefPubMedPubMedCentral Kim KB, Yi JS, Nguyen N, Lee JH, Kwon YC, et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem. 2011;286(26):23093–101.CrossRefPubMedPubMedCentral
75.
go back to reference Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, et al. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem. 2011;286(3):1999–2007.CrossRefPubMed Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, et al. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem. 2011;286(3):1999–2007.CrossRefPubMed
76.
go back to reference Murai T. The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol. 2012;2012:763283.CrossRefPubMed Murai T. The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol. 2012;2012:763283.CrossRefPubMed
77.
go back to reference Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res. 2014;16(1):R19.CrossRefPubMedPubMedCentral Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res. 2014;16(1):R19.CrossRefPubMedPubMedCentral
79.
go back to reference Rakheja D, Kapur P, Hoang MP, Roy LC, Bennett MJ. Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: implications for cryotherapy and lipid raft function. Med Hypotheses. 2005;65(6):1120–3.CrossRefPubMed Rakheja D, Kapur P, Hoang MP, Roy LC, Bennett MJ. Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: implications for cryotherapy and lipid raft function. Med Hypotheses. 2005;65(6):1120–3.CrossRefPubMed
80.
82.
go back to reference Yang YF, Jan YH, Liu YP, Yang CJ, Su CY, et al. Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. Am J Respir Crit Care Med. 2014;190(6):675–87.CrossRefPubMed Yang YF, Jan YH, Liu YP, Yang CJ, Su CY, et al. Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. Am J Respir Crit Care Med. 2014;190(6):675–87.CrossRefPubMed
83.
go back to reference Nath A, Chan C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci Rep. 2016;6:18669.CrossRefPubMedPubMedCentral Nath A, Chan C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci Rep. 2016;6:18669.CrossRefPubMedPubMedCentral
84.
go back to reference Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, et al. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 2016;7(41):67111–28.PubMedPubMedCentral Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, et al. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 2016;7(41):67111–28.PubMedPubMedCentral
85.
go back to reference Brandi J, Dando I, Pozza ED, Biondani G, Jenkins R, et al. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. J Proteomics. 2017;150:310–22.CrossRefPubMed Brandi J, Dando I, Pozza ED, Biondani G, Jenkins R, et al. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. J Proteomics. 2017;150:310–22.CrossRefPubMed
86.
go back to reference Ramesh V, Ganesan K. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages. Gene. 2016;588(1):19–29.CrossRefPubMed Ramesh V, Ganesan K. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages. Gene. 2016;588(1):19–29.CrossRefPubMed
87.
go back to reference Li J, Ren S, Piao HL, Wang F, Yin P, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984.CrossRefPubMedPubMedCentral Li J, Ren S, Piao HL, Wang F, Yin P, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984.CrossRefPubMedPubMedCentral
88.
go back to reference Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2016;541(7635):41–5.CrossRefPubMed Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2016;541(7635):41–5.CrossRefPubMed
89.
go back to reference Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752.CrossRefPubMedPubMedCentral Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752.CrossRefPubMedPubMedCentral
90.
go back to reference Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32(7):1746–58.CrossRefPubMedPubMedCentral Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32(7):1746–58.CrossRefPubMedPubMedCentral
91.
go back to reference Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest. 2012;122(9):3088–100.CrossRefPubMedPubMedCentral Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest. 2012;122(9):3088–100.CrossRefPubMedPubMedCentral
92.
go back to reference Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2(9):778-90. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2(9):778-90.
93.
go back to reference Jose C, Hébert-Chatelain E, Bellance N, Larendra A, Su M, et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta. 2011;1807(6):707-18. Jose C, Hébert-Chatelain E, Bellance N, Larendra A, Su M, et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta. 2011;1807(6):707-18.
94.
go back to reference Swinnen JV, Beckers A, Brusselmans K, Organe S, Segers J, et al. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 2005;65(6):2441-8. Swinnen JV, Beckers A, Brusselmans K, Organe S, Segers J, et al. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 2005;65(6):2441-8.
95.
go back to reference Hatzivassiliou G1, Zhao F, Bauer DE, Andreadis C, Shaw AN, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311-21. Hatzivassiliou G1, Zhao F, Bauer DE, Andreadis C, Shaw AN, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311-21.
96.
go back to reference Ros S, Santos CR, Moco S, Baenke F, Kelly G, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2012;2(4):328-43. Ros S, Santos CR, Moco S, Baenke F, Kelly G, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2012;2(4):328-43.
97.
go back to reference Lupu R, Menendez JA. Pharmacological inhibitors of Fatty Acid Synthase (FASN)—catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr. Pharm. Biotechnol. 2006;7:483–493. Lupu R, Menendez JA. Pharmacological inhibitors of Fatty Acid Synthase (FASN)—catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr. Pharm. Biotechnol. 2006;7:483–493.
98.
go back to reference Grkovich A, Johnson CA, Buczynski MW, Dennis EA. Lipopolysaccharide-induced Cyclooxygenase-2 Expression in Human U937 Macrophages Is Phosphatidic Acid Phosphohydrolase-1-dependent. Journal of Biological Chemistry. 2006;281(44):32978-32987. Grkovich A, Johnson CA, Buczynski MW, Dennis EA. Lipopolysaccharide-induced Cyclooxygenase-2 Expression in Human U937 Macrophages Is Phosphatidic Acid Phosphohydrolase-1-dependent. Journal of Biological Chemistry. 2006;281(44):32978-32987.
99.
go back to reference Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010;9(6):1740-54. Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010;9(6):1740-54.
100.
go back to reference Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, et al., Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res. 2011;9(11):1551-61. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, et al., Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res. 2011;9(11):1551-61.
101.
go back to reference Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807(6):726-34. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807(6):726-34. 
102.
go back to reference Liu PP, Liu J, Jiang WQ, Carew JS, Ogasawara MA, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene. 2016;35(43):5663-73. Liu PP, Liu J, Jiang WQ, Carew JS, Ogasawara MA, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene. 2016;35(43):5663-73.
103.
go back to reference Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37-44. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37-44.
104.
go back to reference Aaltonen N, Savinainen JR, Ribas CR, Rönkkö J, Kuusisto A, et al. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem Biol. 2013;20(3):379-90. Aaltonen N, Savinainen JR, Ribas CR, Rönkkö J, Kuusisto A, et al. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem Biol. 2013;20(3):379-90.
105.
go back to reference Karakas M, Koenig W. Varespladib methyl, an oral phospholipase A2 inhibitor for the potential treatment of coronary artery disease. IDrugs. 2009;12(9):585-92. Karakas M, Koenig W. Varespladib methyl, an oral phospholipase A2 inhibitor for the potential treatment of coronary artery disease. IDrugs. 2009;12(9):585-92.
106.
go back to reference Lee KL, Foley MA, Chen L, Behnke ML, Lovering FE, et al. Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha. J Med Chem. 2007;50(6):1380-400. Lee KL, Foley MA, Chen L, Behnke ML, Lovering FE, et al. Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha. J Med Chem. 2007;50(6):1380-400.
107.
go back to reference McKew JC, Lee KL, Chen L, Vargas R, Clark JD, et al. Inhibitors of cytosolic phospholipase A2. U.S. Patent (Ed.). vol.US7557135B2. USA. 2006. McKew JC, Lee KL, Chen L, Vargas R, Clark JD, et al. Inhibitors of cytosolic phospholipase A2. U.S. Patent (Ed.). vol.US7557135B2. USA. 2006.
108.
go back to reference Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, et al. Synthesis of polyfluoro ketones for selective inhibition of human phospholipase A2 enzymes. J Med Chem. 2008;51(24):8027-37. Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, et al. Synthesis of polyfluoro ketones for selective inhibition of human phospholipase A2 enzymes. J Med Chem. 2008;51(24):8027-37.
109.
go back to reference García-García HM, Oemrawsingh RM, Brugaletta S, Vranckx P, Shannon J, et al. Darapladib effect on circulating high sensitive troponin in patients with acute coronary syndromes. Atherosclerosis. 2012;225(1):142-7. García-García HM, Oemrawsingh RM, Brugaletta S, Vranckx P, Shannon J, et al. Darapladib effect on circulating high sensitive troponin in patients with acute coronary syndromes. Atherosclerosis. 2012;225(1):142-7.
110.
go back to reference Su W, Oladapo Y, Srinivas O, Alyssa G, Jae-Sook P, et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol. 2009;75(3):437-46. Su W, Oladapo Y, Srinivas O, Alyssa G, Jae-Sook P, et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol. 2009;75(3):437-46.
111.
go back to reference Lewis JA, Scott SA, Lavieri R, Buck JR, Selvy PE, et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg Med Chem Lett. 2009;19(7):1916-20. Lewis JA, Scott SA, Lavieri R, Buck JR, Selvy PE, et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg Med Chem Lett. 2009;19(7):1916-20.
112.
go back to reference Lavieri RR, Scott SA, Selvy PE, Kim K, Jadhav S, et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem. 2010;53(18):6706-19. Lavieri RR, Scott SA, Selvy PE, Kim K, Jadhav S, et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem. 2010;53(18):6706-19. 
Metadata
Title
Emerging roles of lipid metabolism in cancer metastasis
Authors
Xiangjian Luo
Can Cheng
Zheqiong Tan
Namei Li
Min Tang
Lifang Yang
Ya Cao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0646-3

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine