Skip to main content
Top
Published in: Tumor Biology 1/2016

01-01-2016 | Research Article

The role of stearoyl-coenzyme A desaturase 1 in clear cell renal cell carcinoma

Authors: Hui Wang, Yujian Zhang, Yongning Lu, Jiajia Song, Min Huang, Jin Zhang, Yiran Huang

Published in: Tumor Biology | Issue 1/2016

Login to get access

Abstract

This study aimed to investigate the correlations of stearoyl-coenzyme A desaturase 1 (SCD-1) with clear cell renal cell carcinoma (ccRCC) severity and PI3K-AKT-mTOR signaling pathway. From 2004 to 2006, tumor tissue and normal pericarcinomatous tissue from ccRCC samples were collected from ccRCC patients at Renji Hospital of Shanghai Jiaotong University. The expression of SCD-1 in the collected ccRCC samples and four cell lines (A498, 769-P, 786-O, and CAKI) was detected by Western blot. The correlation between SCD-1 expression and ccRCC severity was also analyzed by immunohistochemistry. Stable 786-O and 769-P ccRCC cells expressing SCD-1 short hairpin RNA (shRNA) were constructed, and the expression of proteins in the PI3K-AKT-mTOR signaling pathway was also detected. Finally, the inhibitory effect of PI3K-AKT-mTOR inhibitors (PI103, MK2206, rapamycin, AZD8055, and RAD001) on ccRCC cells stably expressing SCD-1 shRNA was also measured. Higher SCD-1 expression level was observed in ccRCC tissues compared with normal tissues. SCD-1 expression level was the highest in 786-O. SCD-1 expression was positively correlated with the tumor-node-metastasis (TNM) stage, grade of tumor cells, and lymphatic metastasis. There were no changes in the expression of AKT, ERK, PI3K, and PDK1. Significant differences were observed in the expression of p-AKT (at the Ser473 and Thr308 site), p-ERK, and two mTOR downstream molecules (4E-BP1 and p-P70S6K1) in cells stably expressing SCD-1 shRNA. PI103 and AZD8055 could enhance the inhibitory effect of SCD-1 interference on proliferation and migration of 786-O and 769-P cells. AZD8055 is recommended for the combined ccRCC treatment with shRNA interference.
Literature
1.
go back to reference Motzer RJ, Agarwal N, Beard C, Bhayani S, Bolger GB, Carducci MA, et al. Kidney cancer. J Natl Compr Canc Netw. 2011;9:960–77.PubMed Motzer RJ, Agarwal N, Beard C, Bhayani S, Bolger GB, Carducci MA, et al. Kidney cancer. J Natl Compr Canc Netw. 2011;9:960–77.PubMed
2.
go back to reference Störkel S, Eble JN, Adlakha K, Amin M, Blute ML, Bostwick DG, et al. Classification of renal cell carcinoma. Cancer. 1997;80:987–9.CrossRefPubMed Störkel S, Eble JN, Adlakha K, Amin M, Blute ML, Bostwick DG, et al. Classification of renal cell carcinoma. Cancer. 1997;80:987–9.CrossRefPubMed
3.
go back to reference Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.CrossRefPubMed Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.CrossRefPubMed
4.
go back to reference Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr (Bethesda). 2011;2:15–22.CrossRef Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr (Bethesda). 2011;2:15–22.CrossRef
5.
go back to reference Morgensztern D, Mcleod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005;16:797–803.CrossRefPubMed Morgensztern D, Mcleod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005;16:797–803.CrossRefPubMed
6.
go back to reference Osaki M, Oshimura MA, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.CrossRefPubMed Osaki M, Oshimura MA, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.CrossRefPubMed
7.
go back to reference Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol. 2005;171:1023–34.CrossRefPubMedPubMedCentral Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol. 2005;171:1023–34.CrossRefPubMedPubMedCentral
8.
go back to reference Scaglia N, Igal RA. Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem. 2005;280:25339–49.CrossRefPubMed Scaglia N, Igal RA. Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem. 2005;280:25339–49.CrossRefPubMed
9.
go back to reference Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956–67.CrossRefPubMed Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956–67.CrossRefPubMed
10.
go back to reference Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, et al. PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22:1698–706.CrossRefPubMed Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, et al. PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22:1698–706.CrossRefPubMed
11.
go back to reference Zhang W, Khatibi NH, Yamaguchi-Okada M, Yan J, Chen C, Hu Q, et al. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines. Exp Neurol. 2012;233:799–806.CrossRefPubMed Zhang W, Khatibi NH, Yamaguchi-Okada M, Yan J, Chen C, Hu Q, et al. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines. Exp Neurol. 2012;233:799–806.CrossRefPubMed
12.
go back to reference Lane HA, Wood JM, Mcsheehy PM, Allegrini PR, Boulay A, Brueggen J, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15:1612–22.CrossRefPubMed Lane HA, Wood JM, Mcsheehy PM, Allegrini PR, Boulay A, Brueggen J, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15:1612–22.CrossRefPubMed
13.
go back to reference Sharma S, Yao H-P, Zhou Y-Q, Zhou J, Zhang R, Wang M-H. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Mol Oncol. 2014;8:469–82.CrossRefPubMed Sharma S, Yao H-P, Zhou Y-Q, Zhou J, Zhang R, Wang M-H. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Mol Oncol. 2014;8:469–82.CrossRefPubMed
15.
go back to reference Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010;5, e11394.CrossRefPubMedPubMedCentral Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010;5, e11394.CrossRefPubMedPubMedCentral
16.
go back to reference Park Y, Storkson JM, Ntambi JM, Cook ME, Sih CJ, Pariza MW. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochim Biophys Acta. 2000;1486:285–92.CrossRefPubMed Park Y, Storkson JM, Ntambi JM, Cook ME, Sih CJ, Pariza MW. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochim Biophys Acta. 2000;1486:285–92.CrossRefPubMed
17.
go back to reference Lyn RK, Singaravelu R, Kargman S, O’Hara S, Chan H, Oballa R, et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci Rep. 2014;4:4549.CrossRefPubMedPubMedCentral Lyn RK, Singaravelu R, Kargman S, O’Hara S, Chan H, Oballa R, et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci Rep. 2014;4:4549.CrossRefPubMedPubMedCentral
18.
go back to reference Scaglia N, Igal RA. Inhibition of stearoyl-CoA desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol. 2008;33:839.PubMed Scaglia N, Igal RA. Inhibition of stearoyl-CoA desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol. 2008;33:839.PubMed
19.
go back to reference Von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013;19:2368–80.CrossRef Von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013;19:2368–80.CrossRef
20.
go back to reference Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang B-H. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal. 2006;18:2262–71.CrossRefPubMed Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang B-H. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal. 2006;18:2262–71.CrossRefPubMed
21.
go back to reference She Q-B, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18:39–51.CrossRefPubMedPubMedCentral She Q-B, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18:39–51.CrossRefPubMedPubMedCentral
22.
go back to reference Liu R, Liu D, Trink E, Bojdani E, Ning G, Xing M. The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J Clin Endocrinol Metab. 2011;96:E577–85.CrossRefPubMedPubMedCentral Liu R, Liu D, Trink E, Bojdani E, Ning G, Xing M. The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J Clin Endocrinol Metab. 2011;96:E577–85.CrossRefPubMedPubMedCentral
23.
go back to reference Liu Y, Gao X, Deeb D, Gautam SC. Oleanane triterpenoid CDDO-Me inhibits Akt activity without affecting PDK1 kinase or PP2A phosphatase activity in cancer cells. Biochem Biophys Res Commun. 2012;417:570–5.CrossRefPubMed Liu Y, Gao X, Deeb D, Gautam SC. Oleanane triterpenoid CDDO-Me inhibits Akt activity without affecting PDK1 kinase or PP2A phosphatase activity in cancer cells. Biochem Biophys Res Commun. 2012;417:570–5.CrossRefPubMed
24.
go back to reference Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28:5422–32.CrossRefPubMedPubMedCentral Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28:5422–32.CrossRefPubMedPubMedCentral
25.
go back to reference Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O’Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120:747–59.CrossRefPubMed Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O’Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120:747–59.CrossRefPubMed
26.
go back to reference Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K. A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res. 2011;71:154–63.CrossRefPubMed Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K. A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res. 2011;71:154–63.CrossRefPubMed
27.
go back to reference Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011;286:40002–12.CrossRefPubMedPubMedCentral Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011;286:40002–12.CrossRefPubMedPubMedCentral
Metadata
Title
The role of stearoyl-coenzyme A desaturase 1 in clear cell renal cell carcinoma
Authors
Hui Wang
Yujian Zhang
Yongning Lu
Jiajia Song
Min Huang
Jin Zhang
Yiran Huang
Publication date
01-01-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3451-x

Other articles of this Issue 1/2016

Tumor Biology 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine