Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2024

Open Access 01-12-2024 | Emergency Medicine | Review

Unmanned aerial vehicles and pre-hospital emergency medicine

Authors: Katy Surman, David Lockey

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2024

Login to get access

Abstract

Unmanned aerial vehicles (UAVs) are used in many industrial and commercial roles and have an increasing number of medical applications. This article reviews the characteristics of UAVs and their current applications in pre-hospital emergency medicine. The key roles are transport of equipment and medications and potentially passengers to or from a scene and the use of cameras to observe or communicate with remote scenes. The potential hazards of UAVs both deliberate or accidental are also discussed.
Literature
1.
go back to reference Rosser JC, Vignesh V, Terwilliger BA, Parker BC. Surgical and Medical Applications of drones: a Comprehensive Review. JSLS. 2018;22(3):e2018.PubMedCentralCrossRef Rosser JC, Vignesh V, Terwilliger BA, Parker BC. Surgical and Medical Applications of drones: a Comprehensive Review. JSLS. 2018;22(3):e2018.PubMedCentralCrossRef
2.
go back to reference Roberts NB, Ager E, Leith T, Lott I, Mason-Maready M, Nix T, et al. Current summary of the evidence in drone-based emergency medical services care. Resusc Plus. 2023;13:100347.PubMedPubMedCentralCrossRef Roberts NB, Ager E, Leith T, Lott I, Mason-Maready M, Nix T, et al. Current summary of the evidence in drone-based emergency medical services care. Resusc Plus. 2023;13:100347.PubMedPubMedCentralCrossRef
3.
go back to reference Chang T, Yu H. Improving Electric Powered UAVs’ endurance by incorporating battery dumping Concept. Procedia Eng. 2015;99:168–79.CrossRef Chang T, Yu H. Improving Electric Powered UAVs’ endurance by incorporating battery dumping Concept. Procedia Eng. 2015;99:168–79.CrossRef
4.
go back to reference Lieb J, Volkert A. Unmanned Aircraft Systems Traffic Management: A comparsion on the FAA UTM and the European CORUS ConOps based on U-space. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) [Internet]. San Antonio, TX, USA: IEEE; 2020 [cited 2023 Nov 29]. p. 1–6. Available from: https://ieeexplore.ieee.org/document/9256745/. Lieb J, Volkert A. Unmanned Aircraft Systems Traffic Management: A comparsion on the FAA UTM and the European CORUS ConOps based on U-space. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) [Internet]. San Antonio, TX, USA: IEEE; 2020 [cited 2023 Nov 29]. p. 1–6. Available from: https://​ieeexplore.​ieee.​org/​document/​9256745/​.
5.
go back to reference Chamola V, Kotesh P, Agarwal A, Naren, Gupta N, Guizani M. A Comprehensive Review of Unmanned Aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021;111:102324.PubMedCrossRef Chamola V, Kotesh P, Agarwal A, Naren, Gupta N, Guizani M. A Comprehensive Review of Unmanned Aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021;111:102324.PubMedCrossRef
7.
go back to reference Fabra F, Zamora W, Sangüesa J, Calafate CT, Cano JC, Manzoni P. A distributed Approach for Collision Avoidance between Multirotor UAVs following planned missions. Sensors. 2019;19(10):2404.PubMedPubMedCentralCrossRef Fabra F, Zamora W, Sangüesa J, Calafate CT, Cano JC, Manzoni P. A distributed Approach for Collision Avoidance between Multirotor UAVs following planned missions. Sensors. 2019;19(10):2404.PubMedPubMedCentralCrossRef
8.
go back to reference Gräsner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G et al. European Resuscitation Council Guidelines. 2021: Epidemiology of cardiac arrest in Europe. Resuscitation. 2021;161:61–79. Gräsner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G et al. European Resuscitation Council Guidelines. 2021: Epidemiology of cardiac arrest in Europe. Resuscitation. 2021;161:61–79.
9.
go back to reference Weisfeldt ML, Everson-Stewart S, Sitlani C, Rea T, Aufderheide TP, Atkins DL, et al. Ventricular tachyarrhythmias after Cardiac arrest in Public versus at Home. N Engl J Med. 2011;364(4):313–21.PubMedPubMedCentralCrossRef Weisfeldt ML, Everson-Stewart S, Sitlani C, Rea T, Aufderheide TP, Atkins DL, et al. Ventricular tachyarrhythmias after Cardiac arrest in Public versus at Home. N Engl J Med. 2011;364(4):313–21.PubMedPubMedCentralCrossRef
10.
go back to reference Semeraro F, Greif R, Böttiger BW, Burkart R, Cimpoesu D, Georgiou M, et al. European Resuscitation Council guidelines 2021: systems saving lives. Resuscitation. 2021;161:80–97.PubMedCrossRef Semeraro F, Greif R, Böttiger BW, Burkart R, Cimpoesu D, Georgiou M, et al. European Resuscitation Council guidelines 2021: systems saving lives. Resuscitation. 2021;161:80–97.PubMedCrossRef
11.
go back to reference Claesson A, Fredman D, Svensson L, Ringh M, Hollenberg J, Nordberg P, et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand J Trauma Resusc Emerg Med. 2016;24(1):124.PubMedPubMedCentralCrossRef Claesson A, Fredman D, Svensson L, Ringh M, Hollenberg J, Nordberg P, et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand J Trauma Resusc Emerg Med. 2016;24(1):124.PubMedPubMedCentralCrossRef
12.
go back to reference Rosamond WD, Johnson AM, Bogle BM, Arnold E, Cunningham CJ, Picinich M, et al. Drone delivery of an Automated External Defibrillator. N Engl J Med. 2020;383(12):1186–8.PubMedPubMedCentralCrossRef Rosamond WD, Johnson AM, Bogle BM, Arnold E, Cunningham CJ, Picinich M, et al. Drone delivery of an Automated External Defibrillator. N Engl J Med. 2020;383(12):1186–8.PubMedPubMedCentralCrossRef
13.
go back to reference Boutilier JJ, Brooks SC, Janmohamed A, Byers A, Buick JE, Zhan C, et al. Optimizing a Drone Network to deliver Automated External defibrillators. Circulation. 2017;135(25):2454–65.PubMedPubMedCentralCrossRef Boutilier JJ, Brooks SC, Janmohamed A, Byers A, Buick JE, Zhan C, et al. Optimizing a Drone Network to deliver Automated External defibrillators. Circulation. 2017;135(25):2454–65.PubMedPubMedCentralCrossRef
14.
go back to reference Claesson A, Bäckman A, Ringh M, Svensson L, Nordberg P, Djärv T, et al. Time to delivery of an Automated External Defibrillator using a drone for simulated out-of-hospital Cardiac arrests vs Emergency Medical services. JAMA. 2017;317(22):2332–4.PubMedPubMedCentralCrossRef Claesson A, Bäckman A, Ringh M, Svensson L, Nordberg P, Djärv T, et al. Time to delivery of an Automated External Defibrillator using a drone for simulated out-of-hospital Cardiac arrests vs Emergency Medical services. JAMA. 2017;317(22):2332–4.PubMedPubMedCentralCrossRef
15.
go back to reference Derkenne C, Jost D, Miron De L’Espinay A, Corpet P, Frattini B, Hong V, et al. Automatic external defibrillator provided by unmanned aerial vehicle (drone) in Greater Paris: a real world-based simulation. Resuscitation. 2021;162:259–65.PubMedCrossRef Derkenne C, Jost D, Miron De L’Espinay A, Corpet P, Frattini B, Hong V, et al. Automatic external defibrillator provided by unmanned aerial vehicle (drone) in Greater Paris: a real world-based simulation. Resuscitation. 2021;162:259–65.PubMedCrossRef
16.
go back to reference Schierbeck S, Nord A, Svensson L, Rawshani A, Hollenberg J, Ringh M, et al. National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones - a geographical information system analysis. Resuscitation. 2021;163:136–45.PubMedCrossRef Schierbeck S, Nord A, Svensson L, Rawshani A, Hollenberg J, Ringh M, et al. National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones - a geographical information system analysis. Resuscitation. 2021;163:136–45.PubMedCrossRef
17.
go back to reference Schierbeck S, Svensson L, Claesson A. Use of a drone-delivered Automated External Defibrillator in an out-of-hospital cardiac arrest. N Engl J Med. 2022;386(20):1953–4.PubMedCrossRef Schierbeck S, Svensson L, Claesson A. Use of a drone-delivered Automated External Defibrillator in an out-of-hospital cardiac arrest. N Engl J Med. 2022;386(20):1953–4.PubMedCrossRef
18.
go back to reference Scholz SS, Wähnert D, Jansen G, Sauzet O, Latka E, Rehberg S, et al. AED delivery at night– can drones do the job? A feasibility study of unmanned aerial systems to transport automated external defibrillators during night-time. Resuscitation. 2023;185:109734.PubMedCrossRef Scholz SS, Wähnert D, Jansen G, Sauzet O, Latka E, Rehberg S, et al. AED delivery at night– can drones do the job? A feasibility study of unmanned aerial systems to transport automated external defibrillators during night-time. Resuscitation. 2023;185:109734.PubMedCrossRef
19.
go back to reference Schierbeck S, Hollenberg J, Nord A, Svensson L, Nordberg P, Ringh M, et al. Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. Eur Heart J. 2022;43(15):1478–87.PubMedCrossRef Schierbeck S, Hollenberg J, Nord A, Svensson L, Nordberg P, Ringh M, et al. Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. Eur Heart J. 2022;43(15):1478–87.PubMedCrossRef
20.
go back to reference Sanfridsson J, Sparrevik J, Hollenberg J, Nordberg P, Djärv T, Ringh M, et al. Drone delivery of an automated external defibrillator– a mixed method simulation study of bystander experience. Scand J Trauma Resusc Emerg Med. 2019;27(1):40.PubMedPubMedCentralCrossRef Sanfridsson J, Sparrevik J, Hollenberg J, Nordberg P, Djärv T, Ringh M, et al. Drone delivery of an automated external defibrillator– a mixed method simulation study of bystander experience. Scand J Trauma Resusc Emerg Med. 2019;27(1):40.PubMedPubMedCentralCrossRef
21.
go back to reference Lim JCL, Loh N, Lam HH, Lee JW, Liu N, Yeo JW, et al. The role of drones in Out-of-hospital cardiac arrest: a scoping review. J Clin Med. 2022;11(19):5744.PubMedPubMedCentralCrossRef Lim JCL, Loh N, Lam HH, Lee JW, Liu N, Yeo JW, et al. The role of drones in Out-of-hospital cardiac arrest: a scoping review. J Clin Med. 2022;11(19):5744.PubMedPubMedCentralCrossRef
22.
go back to reference Smith CM, Lim Choi Keung SN, Khan MO, Arvanitis TN, Fothergill R, Hartley-Sharpe C, et al. Barriers and facilitators to public access defibrillation in out-of-hospital cardiac arrest: a systematic review. Eur Heart J - Qual Care Clin Outcomes. 2017;3(4):264–73.PubMedCrossRef Smith CM, Lim Choi Keung SN, Khan MO, Arvanitis TN, Fothergill R, Hartley-Sharpe C, et al. Barriers and facilitators to public access defibrillation in out-of-hospital cardiac arrest: a systematic review. Eur Heart J - Qual Care Clin Outcomes. 2017;3(4):264–73.PubMedCrossRef
23.
go back to reference Sedig K, Seaton MB, Drennan IR, Cheskes S, Dainty KN. Drones are a great idea! What is an AED? Novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators. Resusc Plus. 2020;4:100033.PubMedPubMedCentralCrossRef Sedig K, Seaton MB, Drennan IR, Cheskes S, Dainty KN. Drones are a great idea! What is an AED? Novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators. Resusc Plus. 2020;4:100033.PubMedPubMedCentralCrossRef
24.
go back to reference Baumgarten MC, Röper J, Hahnenkamp K, Thies KC. Drones delivering automated external defibrillators—integrating unmanned aerial systems into the chain of survival: a simulation study in rural Germany. Resuscitation. 2022;172:139–45.PubMedCrossRef Baumgarten MC, Röper J, Hahnenkamp K, Thies KC. Drones delivering automated external defibrillators—integrating unmanned aerial systems into the chain of survival: a simulation study in rural Germany. Resuscitation. 2022;172:139–45.PubMedCrossRef
25.
go back to reference Olasveengen TM, Semeraro F, Ristagno G, Castren M, Handley A, Kuzovlev A, et al. European Resuscitation Council guidelines 2021: Basic Life Support. Resuscitation. 2021;161:98–114.PubMedCrossRef Olasveengen TM, Semeraro F, Ristagno G, Castren M, Handley A, Kuzovlev A, et al. European Resuscitation Council guidelines 2021: Basic Life Support. Resuscitation. 2021;161:98–114.PubMedCrossRef
26.
go back to reference van Turenhout EC, Bossers SM, Loer SA, Giannakopoulos GF, Schwarte LA, Schober P. Pre-hospital transfusion of red blood cells. Part 2: a systematic review of treatment effects on outcomes. Transfus Med Oxf Engl. 2020;30(2):106–33.CrossRef van Turenhout EC, Bossers SM, Loer SA, Giannakopoulos GF, Schwarte LA, Schober P. Pre-hospital transfusion of red blood cells. Part 2: a systematic review of treatment effects on outcomes. Transfus Med Oxf Engl. 2020;30(2):106–33.CrossRef
27.
go back to reference Homier V, Brouard D, Nolan M, Roy MA, Pelletier P, McDonald M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: the Montreal Medi-Drone pilot study. J Trauma Acute Care Surg. 2021;90(3):515–21.PubMedCrossRef Homier V, Brouard D, Nolan M, Roy MA, Pelletier P, McDonald M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: the Montreal Medi-Drone pilot study. J Trauma Acute Care Surg. 2021;90(3):515–21.PubMedCrossRef
28.
go back to reference Amukele T, Ness PM, Tobian AAR, Boyd J, Street J. Drone transportation of blood products. Transfus (Paris). 2017;57(3):582–8.CrossRef Amukele T, Ness PM, Tobian AAR, Boyd J, Street J. Drone transportation of blood products. Transfus (Paris). 2017;57(3):582–8.CrossRef
29.
31.
go back to reference Zailani MAH, Sabudin RZAR, Rahman RA, Saiboon IM, Ismail A, Mahdy ZA. Drone for medical products transportation in maternal healthcare: a systematic review and framework for future research. Med (Baltim). 2020;99(36):e21967.CrossRef Zailani MAH, Sabudin RZAR, Rahman RA, Saiboon IM, Ismail A, Mahdy ZA. Drone for medical products transportation in maternal healthcare: a systematic review and framework for future research. Med (Baltim). 2020;99(36):e21967.CrossRef
32.
go back to reference Nisingizwe MP, Ndishimye P, Swaibu K, Nshimiyimana L, Karame P, Dushimiyimana V, et al. Effect of unmanned aerial vehicle (drone) delivery on blood product delivery time and wastage in Rwanda: a retrospective, cross-sectional study and time series analysis. Lancet Glob Health. 2022;10(4):e564–9.PubMedCrossRef Nisingizwe MP, Ndishimye P, Swaibu K, Nshimiyimana L, Karame P, Dushimiyimana V, et al. Effect of unmanned aerial vehicle (drone) delivery on blood product delivery time and wastage in Rwanda: a retrospective, cross-sectional study and time series analysis. Lancet Glob Health. 2022;10(4):e564–9.PubMedCrossRef
33.
go back to reference Lammers DT, Williams JM, Conner JR, Baird E, Rokayak O, McClellan JM, et al. Airborne! UAV delivery of blood products and medical logistics for combat zones. Transfus (Paris). 2023;63(Suppl 3):96–104. Lammers DT, Williams JM, Conner JR, Baird E, Rokayak O, McClellan JM, et al. Airborne! UAV delivery of blood products and medical logistics for combat zones. Transfus (Paris). 2023;63(Suppl 3):96–104.
34.
go back to reference Javaudin O, Baillon A, Varin N, Martinaud C, Pouget T, Civadier C, et al. Air-drop blood supply in the French Army. J R Army Med Corps. 2018;164(4):240–4.PubMedCrossRef Javaudin O, Baillon A, Varin N, Martinaud C, Pouget T, Civadier C, et al. Air-drop blood supply in the French Army. J R Army Med Corps. 2018;164(4):240–4.PubMedCrossRef
35.
go back to reference Tong RL, Bohlke CW, Clemente Fuentes RW, Moncada M, Schloe AD, Ashley RL. Operation blood rain: the Effect of Airdrop on Fresh whole blood. J Spec Oper Med Peer Rev J SOF Med Prof. 2021;21(2):29–33.CrossRef Tong RL, Bohlke CW, Clemente Fuentes RW, Moncada M, Schloe AD, Ashley RL. Operation blood rain: the Effect of Airdrop on Fresh whole blood. J Spec Oper Med Peer Rev J SOF Med Prof. 2021;21(2):29–33.CrossRef
37.
go back to reference Ornato JP, You AX, McDiarmid G, Keyser-Marcus L, Surrey A, Humble JR, et al. Feasibility of bystander-administered naloxone delivered by drone to opioid overdose victims. Am J Emerg Med. 2020;38(9):1787–91.PubMedCrossRef Ornato JP, You AX, McDiarmid G, Keyser-Marcus L, Surrey A, Humble JR, et al. Feasibility of bystander-administered naloxone delivered by drone to opioid overdose victims. Am J Emerg Med. 2020;38(9):1787–91.PubMedCrossRef
38.
go back to reference Knoblauch AM, De La Rosa S, Sherman J, Blauvelt C, Matemba C, Maxim L, et al. Bi-directional drones to strengthen healthcare provision: experiences and lessons from Madagascar, Malawi and Senegal. BMJ Glob Health. 2019;4(4):e001541.PubMedPubMedCentralCrossRef Knoblauch AM, De La Rosa S, Sherman J, Blauvelt C, Matemba C, Maxim L, et al. Bi-directional drones to strengthen healthcare provision: experiences and lessons from Madagascar, Malawi and Senegal. BMJ Glob Health. 2019;4(4):e001541.PubMedPubMedCentralCrossRef
39.
go back to reference Kotwal RS, Howard JT, Orman JA, Tarpey BW, Bailey JA, Champion HR, et al. The Effect of a Golden Hour Policy on the morbidity and mortality of Combat casualties. JAMA Surg. 2016;151(1):15.PubMedCrossRef Kotwal RS, Howard JT, Orman JA, Tarpey BW, Bailey JA, Champion HR, et al. The Effect of a Golden Hour Policy on the morbidity and mortality of Combat casualties. JAMA Surg. 2016;151(1):15.PubMedCrossRef
40.
go back to reference Handford C, Reeves F, Parker P. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts. J R Army Med Corps. 2018;164(4):293–6.PubMedCrossRef Handford C, Reeves F, Parker P. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts. J R Army Med Corps. 2018;164(4):293–6.PubMedCrossRef
42.
go back to reference Maddry JK, Arana AA, Mora AG, Perez CA, Cutright JE, Kester BM, et al. Advancing Prehospital Combat Casualty Evacuation: patients amenable to Aeromedical Evacuation via Unmanned Aerial vehicles. Mil Med. 2021;186(3–4):e366–72.PubMedCrossRef Maddry JK, Arana AA, Mora AG, Perez CA, Cutright JE, Kester BM, et al. Advancing Prehospital Combat Casualty Evacuation: patients amenable to Aeromedical Evacuation via Unmanned Aerial vehicles. Mil Med. 2021;186(3–4):e366–72.PubMedCrossRef
45.
go back to reference Al-Naji A, Perera AG, Chahl J. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle. Biomed Eng Online. 2017;16(1):101.PubMedPubMedCentralCrossRef Al-Naji A, Perera AG, Chahl J. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle. Biomed Eng Online. 2017;16(1):101.PubMedPubMedCentralCrossRef
46.
go back to reference Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life signs detector using a drone in disaster zones. Remote Sens. 2019;11(20):2441.CrossRef Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life signs detector using a drone in disaster zones. Remote Sens. 2019;11(20):2441.CrossRef
48.
go back to reference Karaca Y, Cicek M, Tatli O, Sahin A, Pasli S, Beser MF, et al. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am J Emerg Med. 2018;36(4):583–8.PubMedCrossRef Karaca Y, Cicek M, Tatli O, Sahin A, Pasli S, Beser MF, et al. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am J Emerg Med. 2018;36(4):583–8.PubMedCrossRef
49.
go back to reference Claesson A, Svensson L, Nordberg P, Ringh M, Rosenqvist M, Djarv T, et al. Drones may be used to save lives in out of hospital cardiac arrest due to drowning. Resuscitation. 2017;114:152–6.PubMedCrossRef Claesson A, Svensson L, Nordberg P, Ringh M, Rosenqvist M, Djarv T, et al. Drones may be used to save lives in out of hospital cardiac arrest due to drowning. Resuscitation. 2017;114:152–6.PubMedCrossRef
50.
go back to reference Seguin C, Blaquière G, Loundou A, Michelet P, Markarian T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation. 2018;127:63–7.PubMedCrossRef Seguin C, Blaquière G, Loundou A, Michelet P, Markarian T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation. 2018;127:63–7.PubMedCrossRef
51.
go back to reference Bäckman A, Hollenberg J, Svensson L, Ringh M, Nordberg P, Djärv T, et al. Drones for Provision of Flotation support in simulated drowning. Air Med J. 2018;37(3):170–3.PubMedCrossRef Bäckman A, Hollenberg J, Svensson L, Ringh M, Nordberg P, Djärv T, et al. Drones for Provision of Flotation support in simulated drowning. Air Med J. 2018;37(3):170–3.PubMedCrossRef
52.
go back to reference Fakhrulddin SS, Gharghan SK, Al-Naji A, Chahl J. An Advanced First Aid System based on an Unmanned Aerial vehicles and a Wireless Body Area Sensor Network for Elderly persons in Outdoor environments. Sensors. 2019;19(13):2955.PubMedPubMedCentralCrossRef Fakhrulddin SS, Gharghan SK, Al-Naji A, Chahl J. An Advanced First Aid System based on an Unmanned Aerial vehicles and a Wireless Body Area Sensor Network for Elderly persons in Outdoor environments. Sensors. 2019;19(13):2955.PubMedPubMedCentralCrossRef
53.
go back to reference Mukhiddinov M, Abdusalomov AB, Cho J. A wildfire smoke detection system using unmanned aerial vehicle images based on the optimized YOLOv5. Sensors. 2022;22(23):9384.PubMedPubMedCentralCrossRef Mukhiddinov M, Abdusalomov AB, Cho J. A wildfire smoke detection system using unmanned aerial vehicle images based on the optimized YOLOv5. Sensors. 2022;22(23):9384.PubMedPubMedCentralCrossRef
54.
go back to reference Sibley AK, Jain TN, Butler M, Nicholson B, Sibley D, Smith D, et al. Remote scene size-up using an unmanned aerial vehicle in a simulated Mass Casualty Incident. Prehosp Emerg Care. 2019;23(3):332–9.PubMedCrossRef Sibley AK, Jain TN, Butler M, Nicholson B, Sibley D, Smith D, et al. Remote scene size-up using an unmanned aerial vehicle in a simulated Mass Casualty Incident. Prehosp Emerg Care. 2019;23(3):332–9.PubMedCrossRef
55.
go back to reference Jain T, Sibley A, Stryhn H, Lund A, Hubloue I. Comparison of Unmanned Aerial Vehicle Technology versus Standard Practice of Scene Assessment by Paramedic students of a Mass-gathering event. Prehospital Disaster Med. 2021;36(6):756–61.PubMedCrossRef Jain T, Sibley A, Stryhn H, Lund A, Hubloue I. Comparison of Unmanned Aerial Vehicle Technology versus Standard Practice of Scene Assessment by Paramedic students of a Mass-gathering event. Prehospital Disaster Med. 2021;36(6):756–61.PubMedCrossRef
56.
go back to reference Hart A, Chai PR, Griswold MK, Lai JT, Boyer EW, Broach J. Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management. Am J Disaster Med. 2017;12(4):261–5.PubMedCrossRef Hart A, Chai PR, Griswold MK, Lai JT, Boyer EW, Broach J. Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management. Am J Disaster Med. 2017;12(4):261–5.PubMedCrossRef
57.
go back to reference Chuang CC, Rau JY, Lai MK, Shih CL. Combining Unmanned Aerial vehicles, and internet protocol cameras to reconstruct 3-D disaster scenes during Rescue Operations. Prehosp Emerg Care. 2019;23(4):479–84.PubMedCrossRef Chuang CC, Rau JY, Lai MK, Shih CL. Combining Unmanned Aerial vehicles, and internet protocol cameras to reconstruct 3-D disaster scenes during Rescue Operations. Prehosp Emerg Care. 2019;23(4):479–84.PubMedCrossRef
58.
59.
go back to reference Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Bettelli M, et al. Detection of Nuclear sources by UAV Teleoperation using a visuo-haptic augmented reality interface. Sensors. 2017;17(10):2234.PubMedPubMedCentralCrossRef Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Bettelli M, et al. Detection of Nuclear sources by UAV Teleoperation using a visuo-haptic augmented reality interface. Sensors. 2017;17(10):2234.PubMedPubMedCentralCrossRef
60.
go back to reference Avanzato R, Beritelli F. An innovative technique for identification of missing persons in natural disaster based on drone-Femtocell systems. Sensors. 2019;19(20):4547.PubMedPubMedCentralCrossRef Avanzato R, Beritelli F. An innovative technique for identification of missing persons in natural disaster based on drone-Femtocell systems. Sensors. 2019;19(20):4547.PubMedPubMedCentralCrossRef
63.
go back to reference Queirós Pokee D, Barbosa Pereira C, Mösch L, Follmann A, Czaplik M. Consciousness detection on injured simulated patients using Manual and Automatic classification via visible and infrared imaging. Sensors. 2021;21(24):8455.PubMedPubMedCentralCrossRef Queirós Pokee D, Barbosa Pereira C, Mösch L, Follmann A, Czaplik M. Consciousness detection on injured simulated patients using Manual and Automatic classification via visible and infrared imaging. Sensors. 2021;21(24):8455.PubMedPubMedCentralCrossRef
64.
go back to reference Álvarez-García C, Cámara-Anguita S, López-Hens JM, Granero-Moya N, López-Franco MD, María-Comino-Sanz I, et al. Development of the Aerial Remote Triage System using drones in mass casualty scenarios: a survey of international experts. PLoS ONE. 2021;16(5):e0242947.PubMedPubMedCentralCrossRef Álvarez-García C, Cámara-Anguita S, López-Hens JM, Granero-Moya N, López-Franco MD, María-Comino-Sanz I, et al. Development of the Aerial Remote Triage System using drones in mass casualty scenarios: a survey of international experts. PLoS ONE. 2021;16(5):e0242947.PubMedPubMedCentralCrossRef
65.
go back to reference Verma A, Bhattacharya P, Saraswat D, Tanwar S, Kumar N, Sharma R. Secure UAV-Envisioned massive vaccine distribution for COVID-19 underlying 6G network. IEEE Sens J. 2023;23(2):955–68.PubMedCrossRef Verma A, Bhattacharya P, Saraswat D, Tanwar S, Kumar N, Sharma R. Secure UAV-Envisioned massive vaccine distribution for COVID-19 underlying 6G network. IEEE Sens J. 2023;23(2):955–68.PubMedCrossRef
66.
go back to reference Sylverken AA, Owusu M, Agbavor B, Kwarteng A, Ayisi-Boateng NK, Ofori P, et al. Using drones to transport suspected COVID-19 samples; experiences from the second largest testing centre in Ghana, West Africa. PLoS ONE. 2022;17(11):e0277057.PubMedPubMedCentralCrossRef Sylverken AA, Owusu M, Agbavor B, Kwarteng A, Ayisi-Boateng NK, Ofori P, et al. Using drones to transport suspected COVID-19 samples; experiences from the second largest testing centre in Ghana, West Africa. PLoS ONE. 2022;17(11):e0277057.PubMedPubMedCentralCrossRef
68.
go back to reference Barnawi A, Chhikara P, Tekchandani R, Kumar N, Alzahrani B. Artificial intelligence-enabled internet of things-based system for COVID-19 screening using aerial thermal imaging. Future Gener Comput Syst. 2021;124:119–32.PubMedPubMedCentralCrossRef Barnawi A, Chhikara P, Tekchandani R, Kumar N, Alzahrani B. Artificial intelligence-enabled internet of things-based system for COVID-19 screening using aerial thermal imaging. Future Gener Comput Syst. 2021;124:119–32.PubMedPubMedCentralCrossRef
69.
go back to reference Shao Z, Cheng G, Ma J, Wang Z, Wang J, Li D. Real-time and Accurate UAV Pedestrian Detection for Social Distancing Monitoring in COVID-19 pandemic. IEEE Trans Multimed. 2022;24:2069–83.CrossRef Shao Z, Cheng G, Ma J, Wang Z, Wang J, Li D. Real-time and Accurate UAV Pedestrian Detection for Social Distancing Monitoring in COVID-19 pandemic. IEEE Trans Multimed. 2022;24:2069–83.CrossRef
70.
go back to reference Kane B, Zajchowski CAB, Allen TR, McLeod G, Allen NH. Is it safer at the beach? Spatial and temporal analyses of beachgoer behaviors during the COVID-19 pandemic. Ocean Coast Manag. 2021;205:105533.PubMedPubMedCentralCrossRef Kane B, Zajchowski CAB, Allen TR, McLeod G, Allen NH. Is it safer at the beach? Spatial and temporal analyses of beachgoer behaviors during the COVID-19 pandemic. Ocean Coast Manag. 2021;205:105533.PubMedPubMedCentralCrossRef
71.
go back to reference Albert S, Amarilla AA, Trollope B, Sng JDJ, Setoh YX, Deering N, et al. Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2. Environ Res. 2021;196:110944.PubMedPubMedCentralCrossRef Albert S, Amarilla AA, Trollope B, Sng JDJ, Setoh YX, Deering N, et al. Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2. Environ Res. 2021;196:110944.PubMedPubMedCentralCrossRef
72.
go back to reference Barten DG, Tin D, De Cauwer H, Ciottone RG, Ciottone GR. A Counter-terrorism Medicine analysis of drone attacks. Prehospital Disaster Med. 2022;37(2):192–6.CrossRef Barten DG, Tin D, De Cauwer H, Ciottone RG, Ciottone GR. A Counter-terrorism Medicine analysis of drone attacks. Prehospital Disaster Med. 2022;37(2):192–6.CrossRef
73.
go back to reference Tin D, Kallenborn Z, Hart A, Hertelendy AJ, Ciottone GR. Rise of the Unmanned Aerial vehicles: an Imminent Public Health threat mandating Counter-terrorism Medicine preparedness for potential Mass-Casualty attacks. Prehospital Disaster Med. 2021;36(5):636–8.PubMedCrossRef Tin D, Kallenborn Z, Hart A, Hertelendy AJ, Ciottone GR. Rise of the Unmanned Aerial vehicles: an Imminent Public Health threat mandating Counter-terrorism Medicine preparedness for potential Mass-Casualty attacks. Prehospital Disaster Med. 2021;36(5):636–8.PubMedCrossRef
76.
go back to reference Tin D, Kallenborn Z, Hart A, Hertelendy AJ, Ciottone GR. Opioid attack and the implications for Counter-terrorism Medicine. Prehospital Disaster Med. 2021;36(6):661–3.PubMedCrossRef Tin D, Kallenborn Z, Hart A, Hertelendy AJ, Ciottone GR. Opioid attack and the implications for Counter-terrorism Medicine. Prehospital Disaster Med. 2021;36(6):661–3.PubMedCrossRef
77.
go back to reference Alladi T, Chamola V, Sikdar B, Choo KKR. Consumer IoT: security vulnerability Case studies and solutions. IEEE Consum Electron Mag. 2020;9(2):17–25.CrossRef Alladi T, Chamola V, Sikdar B, Choo KKR. Consumer IoT: security vulnerability Case studies and solutions. IEEE Consum Electron Mag. 2020;9(2):17–25.CrossRef
78.
go back to reference Sanz-Martos S, L´ opez-Franco MD. Álvarez-García C, Granero-Moya N, L´ opez-Hens JM, Cámara-Anguita S, Pancorbo-Hidalgo PL, Comino-Sanz IM. Drone applications for emergency and urgent care: a systematic review. Prehosp Disaster Med. 2022;37(4):502–8. Sanz-Martos S, L´ opez-Franco MD. Álvarez-García C, Granero-Moya N, L´ opez-Hens JM, Cámara-Anguita S, Pancorbo-Hidalgo PL, Comino-Sanz IM. Drone applications for emergency and urgent care: a systematic review. Prehosp Disaster Med. 2022;37(4):502–8.
Metadata
Title
Unmanned aerial vehicles and pre-hospital emergency medicine
Authors
Katy Surman
David Lockey
Publication date
01-12-2024
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-024-01180-7

Other articles of this Issue 1/2024

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2024 Go to the issue