Skip to main content
Top
Published in: Inflammation 5/2014

Open Access 01-10-2014

Elevated Levels of Serum IL-12 and IL-18 are Associated with Lower Frequencies of CD4+CD25highFOXP3+ Regulatory T cells in Young Patients with Type 1 Diabetes

Authors: Monika Ryba-Stanisławowska, Karolina Rybarczyk-Kapturska, Małgorzata Myśliwiec, Jolanta Myśliwska

Published in: Inflammation | Issue 5/2014

Login to get access

Abstract

Type 1 diabetes is thought to involve chronic inflammation, which is manifested by the activation and expression of different inflammatory mediators. IL-12 and IL-18 are two cytokines that have been shown to exert strong proinflammatory activity and have been implicated in the pathogenesis of type 1 diabetes in mice and humans. The overproduction of proinflammatory mediators is controlled by specialized T cell subset, namely regulatory T cells that express FOXP3 transcription factor. Since IL-12 and IL-18 mediate inflammatory response and Tregs exhibit anti-inflammatory potential, we aimed to examine their reciprocal relationship in patients with type 1 diabetes. The study group consisted of 47 children diagnosed with type 1 diabetes and 28 healthy individuals. Serum levels of IL-12 and IL-18 were measured by ELISA, and the peripheral blood CD4+CD25high FOXP3+ regulatory T cell frequencies were analyzed by flow cytometry. Patients with type 1 diabetes had a decreased percentage of circulating CD4+CD25highFOXP3+ Tregs in comparison to their healthy counterparts. In addition, they produced more IL-12 and IL-18 than children from the control group. Concentrations of these cytokines positively correlated with one another, as well as with CRP and HbA1c. Moreover, the negative association between IL-12, IL-18, CRP serum levels, and the frequency of regulatory CD4+CD25highFOXP3+ Tregs was observed. IL-12 and IL-18 may have direct or indirect impact on regulatory T cell subset, which may contribute to their reduced frequency in peripheral blood of patients with type 1 diabetes mellitus.
Literature
1.
go back to reference King, G.L. 2008. The role of inflammatory cytokines in diabetes and its complications. Journal of Periodontology 79: 1527–1534.PubMedCrossRef King, G.L. 2008. The role of inflammatory cytokines in diabetes and its complications. Journal of Periodontology 79: 1527–1534.PubMedCrossRef
2.
go back to reference Watford, W.T., M. Moriguchi, A. Morinobu, and J.J. O’Shea. 2003. The biology of IL-12: Coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews 14: 361–368.CrossRef Watford, W.T., M. Moriguchi, A. Morinobu, and J.J. O’Shea. 2003. The biology of IL-12: Coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews 14: 361–368.CrossRef
3.
go back to reference Hölscher, C. 2004. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Medical Microbiology and Immunology 193: 1–17.PubMedCrossRef Hölscher, C. 2004. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Medical Microbiology and Immunology 193: 1–17.PubMedCrossRef
5.
go back to reference Alleva, D.G., R.P. Pavlovich, C. Grant, S.B. Kaser, and D.I. Beller. 2000. Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice. Diabetes 49: 1106–1115.PubMedCrossRef Alleva, D.G., R.P. Pavlovich, C. Grant, S.B. Kaser, and D.I. Beller. 2000. Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice. Diabetes 49: 1106–1115.PubMedCrossRef
6.
go back to reference Wu, H.P., C.H. Chen, H.C. Hsieh, and Y.C. Liu. 2008. Effects of insulin and glucose on cytokine production from peripheral blood mononuclear cells. Chang Gung Medical Journal 31: 253–259.PubMed Wu, H.P., C.H. Chen, H.C. Hsieh, and Y.C. Liu. 2008. Effects of insulin and glucose on cytokine production from peripheral blood mononuclear cells. Chang Gung Medical Journal 31: 253–259.PubMed
7.
go back to reference Wu, H.P., S.F. Kuo, S.Y. Wu, and D.Y. Chuang. 2010. High interleukin-12 production from stimulated peripheral blood mononuclear cells of type 2 diabetes patients. Cytokine 51: 298–304.PubMedCrossRef Wu, H.P., S.F. Kuo, S.Y. Wu, and D.Y. Chuang. 2010. High interleukin-12 production from stimulated peripheral blood mononuclear cells of type 2 diabetes patients. Cytokine 51: 298–304.PubMedCrossRef
8.
go back to reference Gverović Antunica, A., K. Karaman, L. Znaor, A. Sapunar, V. Buško, and V. Puzović. 2012. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefe’s Archive for Clinical and Experimental Ophthalmology 250: 815–821.PubMedCrossRef Gverović Antunica, A., K. Karaman, L. Znaor, A. Sapunar, V. Buško, and V. Puzović. 2012. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefe’s Archive for Clinical and Experimental Ophthalmology 250: 815–821.PubMedCrossRef
9.
go back to reference Tsutsui, H., K. Matsui, H. Okamura, and K. Nakanishi. 2000. Pathophysiological roles of interleukin-18 for inflammatory liver diseases. Immunological Reviews 174: 192–209.PubMedCrossRef Tsutsui, H., K. Matsui, H. Okamura, and K. Nakanishi. 2000. Pathophysiological roles of interleukin-18 for inflammatory liver diseases. Immunological Reviews 174: 192–209.PubMedCrossRef
10.
go back to reference Boraschi, D., and C.A. Dinarello. 2006. IL-18 in autoimmunity: Review. European Cytokine Network 17: 224–252.PubMed Boraschi, D., and C.A. Dinarello. 2006. IL-18 in autoimmunity: Review. European Cytokine Network 17: 224–252.PubMed
11.
go back to reference Liu, Z., H. Wang, W. Xiao, C. Wang, G. Liu, and T. Hong. 2010. Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. International Journal of Experimental Pathology 91: 420–425.PubMedCrossRefPubMedCentral Liu, Z., H. Wang, W. Xiao, C. Wang, G. Liu, and T. Hong. 2010. Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. International Journal of Experimental Pathology 91: 420–425.PubMedCrossRefPubMedCentral
12.
go back to reference Zhang, W., X.L. Cong, Y.H. Qin, Z.W. He, D.Y. He, and S.M. Dai. 2013. IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36: 103–109.PubMedCrossRef Zhang, W., X.L. Cong, Y.H. Qin, Z.W. He, D.Y. He, and S.M. Dai. 2013. IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36: 103–109.PubMedCrossRef
13.
go back to reference Wen, D., J. Liu, X. Du, J.Z. Dong, and C.S. Ma. 2014. Association of interleukin-18 (-137G/C) polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. International Reviews of Immunology 33: 34–44.PubMedCrossRef Wen, D., J. Liu, X. Du, J.Z. Dong, and C.S. Ma. 2014. Association of interleukin-18 (-137G/C) polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. International Reviews of Immunology 33: 34–44.PubMedCrossRef
14.
go back to reference Sawada, M., T. Kawayama, H. Imaoka, Y. Sakazaki, H. Oda, S. Takenaka, Y. Kaku, K. Azuma, M. Tajiri, N. Edakuni, M. Okamoto, S. Kato, and T. Hoshino. 2013. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13. PLoS One 8: e54623.PubMedCrossRefPubMedCentral Sawada, M., T. Kawayama, H. Imaoka, Y. Sakazaki, H. Oda, S. Takenaka, Y. Kaku, K. Azuma, M. Tajiri, N. Edakuni, M. Okamoto, S. Kato, and T. Hoshino. 2013. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13. PLoS One 8: e54623.PubMedCrossRefPubMedCentral
15.
go back to reference Kawayama, T., M. Okamoto, H. Imaoka, S. Kato, H.A. Young, and T. Hoshino. 2012. Interleukin-18 in pulmonary inflammatory diseases. Journal of Interferon & Cytokine Research 32: 443–449.CrossRef Kawayama, T., M. Okamoto, H. Imaoka, S. Kato, H.A. Young, and T. Hoshino. 2012. Interleukin-18 in pulmonary inflammatory diseases. Journal of Interferon & Cytokine Research 32: 443–449.CrossRef
16.
go back to reference Kanai, T., M. Watanabe, A. Okazawa, T. Sato, and T. Hibi. 2001. Interleukin-18 and Crohn’s disease. Digestion 63: 37–42.PubMedCrossRef Kanai, T., M. Watanabe, A. Okazawa, T. Sato, and T. Hibi. 2001. Interleukin-18 and Crohn’s disease. Digestion 63: 37–42.PubMedCrossRef
17.
go back to reference Kretowski, A., K. Mironczuk, A. Karpinska, U. Bojaryn, M. Kinalski, Z. Puchalski, and I. Kinalska. 2002. Interleukin-18 promoter polymorphisms in type 1 diabetes. Diabetes 51: 3347–3349.PubMedCrossRef Kretowski, A., K. Mironczuk, A. Karpinska, U. Bojaryn, M. Kinalski, Z. Puchalski, and I. Kinalska. 2002. Interleukin-18 promoter polymorphisms in type 1 diabetes. Diabetes 51: 3347–3349.PubMedCrossRef
18.
go back to reference Ide, A., E. Kawasaki, N. Abiru, F. Sun, M. Kobayashi, T. Fukushima, R. Takahashi, H. Kuwahara, A. Kita, K. Oshima, S. Uotani, H. Yamasaki, Y. Yamaguchi, and K. Eguchi. 2004. Association between IL-18 gene promoter polymorphisms and CTLA-4 gene 49A/G polymorphism in Japanese patients with type 1 diabetes. Journal of Autoimmunity 22: 73–78.PubMedCrossRef Ide, A., E. Kawasaki, N. Abiru, F. Sun, M. Kobayashi, T. Fukushima, R. Takahashi, H. Kuwahara, A. Kita, K. Oshima, S. Uotani, H. Yamasaki, Y. Yamaguchi, and K. Eguchi. 2004. Association between IL-18 gene promoter polymorphisms and CTLA-4 gene 49A/G polymorphism in Japanese patients with type 1 diabetes. Journal of Autoimmunity 22: 73–78.PubMedCrossRef
19.
go back to reference Szeszko, J.S., J.M. Howson, J.D. Cooper, N.M. Walker, R.C. Twells, H.E. Stevens, S.L. Nutland, and J.A. Todd. 2006. Analysis of polymorphisms of the interleukin-18 gene in type 1 diabetes and Hardy–Weinberg equilibrium testing. Diabetes 55: 559–562.PubMedCrossRef Szeszko, J.S., J.M. Howson, J.D. Cooper, N.M. Walker, R.C. Twells, H.E. Stevens, S.L. Nutland, and J.A. Todd. 2006. Analysis of polymorphisms of the interleukin-18 gene in type 1 diabetes and Hardy–Weinberg equilibrium testing. Diabetes 55: 559–562.PubMedCrossRef
20.
go back to reference Mojtahedi, Z., S. Naeimi, S. Farjadian, G.R. Omrani, and A. Ghaderi. 2006. Association of IL-18 promoter polymorphisms with predisposition to type 1 diabetes. Diabetic Medicine 23: 235–239.PubMedCrossRef Mojtahedi, Z., S. Naeimi, S. Farjadian, G.R. Omrani, and A. Ghaderi. 2006. Association of IL-18 promoter polymorphisms with predisposition to type 1 diabetes. Diabetic Medicine 23: 235–239.PubMedCrossRef
21.
go back to reference Myhr, C.B., M.A. Hulme, C.H. Wasserfall, P.J. Hong, P.S. Lakshmi, D.A. Schatz, M.J. Haller, T.M. Brusko, and M.A. Atkinson. 2013. The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNγ production by PBMC. Journal of Autoimmunity 44: 8–12.PubMedCrossRefPubMedCentral Myhr, C.B., M.A. Hulme, C.H. Wasserfall, P.J. Hong, P.S. Lakshmi, D.A. Schatz, M.J. Haller, T.M. Brusko, and M.A. Atkinson. 2013. The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNγ production by PBMC. Journal of Autoimmunity 44: 8–12.PubMedCrossRefPubMedCentral
22.
go back to reference Esposito, K., F. Nappo, F. Giugliano, C. Di Palo, M. Ciotola, M. Barbieri, G. Paolisso, and D. Giugliano. 2003. Cytokine milieu tends toward inflammation in type 2 diabetes. Diabetes Care 26: 1647.PubMedCrossRef Esposito, K., F. Nappo, F. Giugliano, C. Di Palo, M. Ciotola, M. Barbieri, G. Paolisso, and D. Giugliano. 2003. Cytokine milieu tends toward inflammation in type 2 diabetes. Diabetes Care 26: 1647.PubMedCrossRef
23.
go back to reference Aso, Y., K. Okumura, K. Takebayashi, S. Wakabayashi, and T. Inukai. 2003. Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care 26: 2622–2627.PubMedCrossRef Aso, Y., K. Okumura, K. Takebayashi, S. Wakabayashi, and T. Inukai. 2003. Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care 26: 2622–2627.PubMedCrossRef
24.
go back to reference Mahmoud, R.A., S.A. el-Ezz, and A.S. Hegazy. 2004. Increased serum levels of interleukin-18 in patients with diabetic nephropathy. The Italian Journal of Biochemistry 53: 73–81.PubMed Mahmoud, R.A., S.A. el-Ezz, and A.S. Hegazy. 2004. Increased serum levels of interleukin-18 in patients with diabetic nephropathy. The Italian Journal of Biochemistry 53: 73–81.PubMed
25.
go back to reference Moriwaki, Y., T. Yamamoto, Y. Shibutani, E. Aoki, Z. Tsutsumi, S. Takahashi, H. Okamura, M. Koga, M. Fukuchi, and T. Hada. 2003. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Metabolism 52: 605–608.PubMedCrossRef Moriwaki, Y., T. Yamamoto, Y. Shibutani, E. Aoki, Z. Tsutsumi, S. Takahashi, H. Okamura, M. Koga, M. Fukuchi, and T. Hada. 2003. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Metabolism 52: 605–608.PubMedCrossRef
27.
go back to reference Prado, C., B. de Paz, P. López, J. Gómez, J. Rodríguez-Carrio, and A. Suáre. 2013. Relationship between FOXP3 positive populations and cytokine production in systemic lupus erythematosus. Cytokine 61: 90–96.PubMedCrossRef Prado, C., B. de Paz, P. López, J. Gómez, J. Rodríguez-Carrio, and A. Suáre. 2013. Relationship between FOXP3 positive populations and cytokine production in systemic lupus erythematosus. Cytokine 61: 90–96.PubMedCrossRef
28.
go back to reference Sakaguchi, S., M. Miyara, C.M. Costantino, and D.A. Hafler. 2010. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology 10: 490–500.PubMedCrossRef Sakaguchi, S., M. Miyara, C.M. Costantino, and D.A. Hafler. 2010. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology 10: 490–500.PubMedCrossRef
29.
go back to reference Baecher-Allan, C., J.A. Brown, C.J. Freeman, and D.A. Hafler. 2001. CD4 + CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.CrossRef Baecher-Allan, C., J.A. Brown, C.J. Freeman, and D.A. Hafler. 2001. CD4 + CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.CrossRef
30.
go back to reference Miyara, M., G. Gorochov, M. Ehrenstein, L. Musset, S. Sakaguchi, and Z. Amoura. 2011. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews 10: 744–755.PubMedCrossRef Miyara, M., G. Gorochov, M. Ehrenstein, L. Musset, S. Sakaguchi, and Z. Amoura. 2011. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews 10: 744–755.PubMedCrossRef
31.
go back to reference Chavele, K.M., and M.R. Ehrenstein. 2011. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Letters 585: 3603–3610.PubMedCrossRef Chavele, K.M., and M.R. Ehrenstein. 2011. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Letters 585: 3603–3610.PubMedCrossRef
32.
go back to reference Huan, J., N. Culbertson, L. Spencer, R. Bartholomew, G.G. Burrows, Y.K. Chou, D. Bourdette, S.F. Ziegler, H. Offner, and A.A. Vandenbark. 2005. Decreased FOXP3 levels in multiple sclerosis patients. Journal of Neuroscience Research 81: 45–52.PubMedCrossRef Huan, J., N. Culbertson, L. Spencer, R. Bartholomew, G.G. Burrows, Y.K. Chou, D. Bourdette, S.F. Ziegler, H. Offner, and A.A. Vandenbark. 2005. Decreased FOXP3 levels in multiple sclerosis patients. Journal of Neuroscience Research 81: 45–52.PubMedCrossRef
33.
go back to reference Ryba, M., N. Marek, Ł. Hak, K. Rybarczyk-Kapturska, M. Myśliwiec, P. Trzonkowski, and J. Myśliwska. 2011. Anti-TNF rescue CD4 + Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine 55(3): 353–361.PubMedCrossRef Ryba, M., N. Marek, Ł. Hak, K. Rybarczyk-Kapturska, M. Myśliwiec, P. Trzonkowski, and J. Myśliwska. 2011. Anti-TNF rescue CD4 + Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine 55(3): 353–361.PubMedCrossRef
34.
go back to reference Eller, K., A. Kirsch, A.M. Wolf, S. Sopper, A. Tagwerker, U. Stanzl, D. Wolf, W. Patsch, A.R. Rosenkranz, and P. Eller. 2011. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60: 2954–2962.PubMedCrossRefPubMedCentral Eller, K., A. Kirsch, A.M. Wolf, S. Sopper, A. Tagwerker, U. Stanzl, D. Wolf, W. Patsch, A.R. Rosenkranz, and P. Eller. 2011. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60: 2954–2962.PubMedCrossRefPubMedCentral
35.
go back to reference Wang, Y., X. Feng, S. Bao, S. Yi, L. Kairaitis, Y.C. Tay, G.K. Rangan, and D.C. Harris. 2001. Depletion of CD4+ T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy. Kidney International 59: 975–984.PubMedCrossRef Wang, Y., X. Feng, S. Bao, S. Yi, L. Kairaitis, Y.C. Tay, G.K. Rangan, and D.C. Harris. 2001. Depletion of CD4+ T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy. Kidney International 59: 975–984.PubMedCrossRef
36.
go back to reference Wang, Y.M., G.Y. Zhang, Y. Wang, M. Hu, H. Wu, D. Watson, S. Hori, I.E. Alexander, D.C. Harris, and S.I. Alexander. 2006. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. Journal of the American Society of Nephrology 17: 697–706.PubMedCrossRef Wang, Y.M., G.Y. Zhang, Y. Wang, M. Hu, H. Wu, D. Watson, S. Hori, I.E. Alexander, D.C. Harris, and S.I. Alexander. 2006. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. Journal of the American Society of Nephrology 17: 697–706.PubMedCrossRef
37.
go back to reference Mahajan, D., Y. Wang, X. Qin, Y. Wang, G. Zheng, Y.M. Wang, S.I. Alexander, and D.C. Harris. 2006. CD4 + CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. Journal of the American Society of Nephrology 17: 2731–2741.PubMedCrossRef Mahajan, D., Y. Wang, X. Qin, Y. Wang, G. Zheng, Y.M. Wang, S.I. Alexander, and D.C. Harris. 2006. CD4 + CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. Journal of the American Society of Nephrology 17: 2731–2741.PubMedCrossRef
38.
go back to reference Bierhaus, A., S. Schiekofer, M. Schwaninger, M. Andrassy, P.M. Humpert, J. Chen, M. Hong, T. Luther, T. Henle, I. Klöting, M. Morcos, M. Hofmann, H. Tritschler, B. Weigle, M. Kasper, M. Smith, G. Perry, A.M. Schmidt, D.M. Stern, H.U. Häring, E. Schleicher, and P.P. Nawroth. 2001. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50: 2792–2808.PubMedCrossRef Bierhaus, A., S. Schiekofer, M. Schwaninger, M. Andrassy, P.M. Humpert, J. Chen, M. Hong, T. Luther, T. Henle, I. Klöting, M. Morcos, M. Hofmann, H. Tritschler, B. Weigle, M. Kasper, M. Smith, G. Perry, A.M. Schmidt, D.M. Stern, H.U. Häring, E. Schleicher, and P.P. Nawroth. 2001. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50: 2792–2808.PubMedCrossRef
39.
go back to reference Devaraj, S., N. Glaser, S. Griffen, J. Wang-Polagruto, E. Miguelino, and I. Jialal. 2006. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55: 774–779.PubMedCrossRef Devaraj, S., N. Glaser, S. Griffen, J. Wang-Polagruto, E. Miguelino, and I. Jialal. 2006. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55: 774–779.PubMedCrossRef
40.
go back to reference Jialal, I., and S. Devaraj. 2012. Circulating versus cellular biomarkers of inflammation in Type 1 diabetes: the superiority of C-reactive protein. Cytokine 60: 318–320.PubMedCrossRef Jialal, I., and S. Devaraj. 2012. Circulating versus cellular biomarkers of inflammation in Type 1 diabetes: the superiority of C-reactive protein. Cytokine 60: 318–320.PubMedCrossRef
41.
go back to reference Devaraj, S., A.T. Cheung, I. Jialal, S.C. Griffen, D. Nguyen, N. Glaser, and T. Aoki. 2007. Evidence of increased inflammation and microcirculatory abnormalitie in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56: 2790–2796.PubMedCrossRefPubMedCentral Devaraj, S., A.T. Cheung, I. Jialal, S.C. Griffen, D. Nguyen, N. Glaser, and T. Aoki. 2007. Evidence of increased inflammation and microcirculatory abnormalitie in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56: 2790–2796.PubMedCrossRefPubMedCentral
42.
go back to reference Schramm, M.T., N. Chaturvedi, C. Schalkwijk, F. Giorgino, P. Ebeling, J.H. Fuller, and C.D. Stehouwer. 2003. The EURODIAB Prospective Complications Study Group: Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes. Diabetes Care 26: 2165–2173.CrossRef Schramm, M.T., N. Chaturvedi, C. Schalkwijk, F. Giorgino, P. Ebeling, J.H. Fuller, and C.D. Stehouwer. 2003. The EURODIAB Prospective Complications Study Group: Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes. Diabetes Care 26: 2165–2173.CrossRef
43.
go back to reference Ishihara, K., and T. Hirano. 2002. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine & Growth Factor Reviews 13: 357–368.CrossRef Ishihara, K., and T. Hirano. 2002. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine & Growth Factor Reviews 13: 357–368.CrossRef
44.
go back to reference Malaviya, A.M. 2006. Cytokine network and its manipulation in rheumatoid arthritis. The Journal of the Association of Physicians of India 54: 15–18.PubMed Malaviya, A.M. 2006. Cytokine network and its manipulation in rheumatoid arthritis. The Journal of the Association of Physicians of India 54: 15–18.PubMed
45.
go back to reference Devaraj, S., and I. Jialal. 2011. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 1397–1402.PubMedCrossRefPubMedCentral Devaraj, S., and I. Jialal. 2011. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 1397–1402.PubMedCrossRefPubMedCentral
46.
go back to reference Blazhev, A., G. Nicoloff, Ch. Petrova, and P. Jordanova-Laleva. 2006. Serum levels of interleukin 12 and interleukin 18 in diabetic Children. Diabetologia Croatica 35: 3–6. Blazhev, A., G. Nicoloff, Ch. Petrova, and P. Jordanova-Laleva. 2006. Serum levels of interleukin 12 and interleukin 18 in diabetic Children. Diabetologia Croatica 35: 3–6.
47.
go back to reference Altinova, A.E., I. Yetkin, E. Akbay, N. Bukan, and M. Arslan. 2008. Serum IL-18 levels in patients with type 1 diabetes: Relations to metabolic control and microvascular complications. Cytokine 42: 217–221.PubMedCrossRef Altinova, A.E., I. Yetkin, E. Akbay, N. Bukan, and M. Arslan. 2008. Serum IL-18 levels in patients with type 1 diabetes: Relations to metabolic control and microvascular complications. Cytokine 42: 217–221.PubMedCrossRef
48.
go back to reference Katakami, N., H. Kaneto, M. Matsuhisa, K. Yoshiuchi, K. Kato, K. Yamamoto, Y. Umayahara, K. Kosugi, M. Hori, and Y. Yamasaki. 2007. Serum interleukin-18 levels are increased and closely associated with various soluble adhesion molecule levels in type 1 diabetic patients. Diabetes Care 30: 159–161.PubMedCrossRef Katakami, N., H. Kaneto, M. Matsuhisa, K. Yoshiuchi, K. Kato, K. Yamamoto, Y. Umayahara, K. Kosugi, M. Hori, and Y. Yamasaki. 2007. Serum interleukin-18 levels are increased and closely associated with various soluble adhesion molecule levels in type 1 diabetic patients. Diabetes Care 30: 159–161.PubMedCrossRef
49.
go back to reference Esposito, K., F. Nappo, R. Marfella, G. Giugliano, F. Giugliano, M. Ciotola, L. Quagliaro, A. Ceriello, and D. Giugliano. 2002. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 106: 2067–2072.PubMedCrossRef Esposito, K., F. Nappo, R. Marfella, G. Giugliano, F. Giugliano, M. Ciotola, L. Quagliaro, A. Ceriello, and D. Giugliano. 2002. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 106: 2067–2072.PubMedCrossRef
50.
go back to reference Kretowski, A., and I. Kinalska. 2003. Serum levels of interleukin-18–a potential marker of cardiovascular death–could be determined by genetic predisposition. Circulation 107: e206–e207.PubMedCrossRef Kretowski, A., and I. Kinalska. 2003. Serum levels of interleukin-18–a potential marker of cardiovascular death–could be determined by genetic predisposition. Circulation 107: e206–e207.PubMedCrossRef
51.
go back to reference Dong, G., L. Liang, J. Fu, and C. Zou. 2007. Serum interleukin-18 levels are raised in diabetic ketoacidosis in Chinese children with type 1 diabetes mellitus. Indian Pediatrics 44: 732–736.PubMed Dong, G., L. Liang, J. Fu, and C. Zou. 2007. Serum interleukin-18 levels are raised in diabetic ketoacidosis in Chinese children with type 1 diabetes mellitus. Indian Pediatrics 44: 732–736.PubMed
52.
go back to reference Renard, E. 2005. Monitoring glycemic control: the importance of self-monitoring of blood glucose. American Journal of Medicine 118: 12S–19S.PubMedCrossRef Renard, E. 2005. Monitoring glycemic control: the importance of self-monitoring of blood glucose. American Journal of Medicine 118: 12S–19S.PubMedCrossRef
53.
go back to reference Jana, M., S. Dasgupta, R.N. Saha, X. Liu, and K. Pahan. 2003. Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. Journal of Neurochemistry 86: 519–528.PubMedCrossRefPubMedCentral Jana, M., S. Dasgupta, R.N. Saha, X. Liu, and K. Pahan. 2003. Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. Journal of Neurochemistry 86: 519–528.PubMedCrossRefPubMedCentral
54.
go back to reference Morrow, M.P., P. Pankhong, D.J. Laddy, K.A. Schoenly, J. Yan, N. Cisper, and D.B. Weiner. 2009. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood 113: 5868–5877.PubMedCrossRefPubMedCentral Morrow, M.P., P. Pankhong, D.J. Laddy, K.A. Schoenly, J. Yan, N. Cisper, and D.B. Weiner. 2009. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood 113: 5868–5877.PubMedCrossRefPubMedCentral
55.
go back to reference Zhao, Z., S. Yu, D.C. Fitzgerald, M. Elbehi, B. Ciric, A.M. Rostami, and G.X. Zhang. 2008. IL-12R beta 2 promotes the development of CD4 + CD25+ regulatory T cells. Journal of Immunology 181: 3870–3876.CrossRef Zhao, Z., S. Yu, D.C. Fitzgerald, M. Elbehi, B. Ciric, A.M. Rostami, and G.X. Zhang. 2008. IL-12R beta 2 promotes the development of CD4 + CD25+ regulatory T cells. Journal of Immunology 181: 3870–3876.CrossRef
56.
go back to reference King, I.L., and B.M. Segal. 2005. Cutting edge: IL-12 induces CD4 + CD25- T cell activation in the presence of T regulatory cells. Journal of Immunology 175: 641–645.CrossRef King, I.L., and B.M. Segal. 2005. Cutting edge: IL-12 induces CD4 + CD25- T cell activation in the presence of T regulatory cells. Journal of Immunology 175: 641–645.CrossRef
57.
go back to reference Oldenhove, G., N. Bouladoux, E.A. Wohlfert, J.A. Hall, D. Chou, L. Dos Santos, S. O’Brien, R. Blank, E. Lamb, S. Natarajan, R. Kastenmayer, C. Hunter, M.E. Grigg, and Y. Belkaid. 2009. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31: 772–786.PubMedCrossRefPubMedCentral Oldenhove, G., N. Bouladoux, E.A. Wohlfert, J.A. Hall, D. Chou, L. Dos Santos, S. O’Brien, R. Blank, E. Lamb, S. Natarajan, R. Kastenmayer, C. Hunter, M.E. Grigg, and Y. Belkaid. 2009. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31: 772–786.PubMedCrossRefPubMedCentral
58.
go back to reference Feng, T., A.T. Cao, C.T. Weaver, C.O. Elson, and Y. Cong. 2011. Interleukin-12 converts Foxp3+ regulatory T cells to interferon-gamma-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140: 2031–2043.PubMedCrossRefPubMedCentral Feng, T., A.T. Cao, C.T. Weaver, C.O. Elson, and Y. Cong. 2011. Interleukin-12 converts Foxp3+ regulatory T cells to interferon-gamma-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140: 2031–2043.PubMedCrossRefPubMedCentral
59.
go back to reference Zhao, J., J. Zhao, and S. Perlman. 2012. Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-γ, IL-2 and IL-2R. PLoS One 7: e46241.PubMedCrossRefPubMedCentral Zhao, J., J. Zhao, and S. Perlman. 2012. Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-γ, IL-2 and IL-2R. PLoS One 7: e46241.PubMedCrossRefPubMedCentral
60.
go back to reference Carroll, R.G., C. Carpenito, X. Shan, G. Danet-Desnoyers, R. Liu, S. Jiang, S.M. Albelda, T. Golovina, G. Coukos, J.L. Riley, Z.L. Jonak, and C.H. June. 2008. Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells. PLoS One 26: e3289.CrossRef Carroll, R.G., C. Carpenito, X. Shan, G. Danet-Desnoyers, R. Liu, S. Jiang, S.M. Albelda, T. Golovina, G. Coukos, J.L. Riley, Z.L. Jonak, and C.H. June. 2008. Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells. PLoS One 26: e3289.CrossRef
61.
go back to reference Tsuji, N.M., and B. Nowak. 2004. IL-18 and antigen-specific CD4(+) regulatory T cells in Peyer’s patches. Annals of the New York Academy of Sciences 1029: 413–415.PubMedCrossRef Tsuji, N.M., and B. Nowak. 2004. IL-18 and antigen-specific CD4(+) regulatory T cells in Peyer’s patches. Annals of the New York Academy of Sciences 1029: 413–415.PubMedCrossRef
62.
go back to reference Zeiser, R., E.A. Zambricki, D. Leveson-Gower, N. Kambham, A. Beilhack, and R.S. Negrin. 2007. Host-derived interleukin-18 differentially impacts regulatory and conventional T cell expansion during acute graft-versus-host disease. Biology of Blood and Marrow Transplantation 13: 1427–1438.PubMedCrossRefPubMedCentral Zeiser, R., E.A. Zambricki, D. Leveson-Gower, N. Kambham, A. Beilhack, and R.S. Negrin. 2007. Host-derived interleukin-18 differentially impacts regulatory and conventional T cell expansion during acute graft-versus-host disease. Biology of Blood and Marrow Transplantation 13: 1427–1438.PubMedCrossRefPubMedCentral
63.
go back to reference Ryba-Stanisławowska, M., M. Skrzypkowska, M. Myśliwiec, and J. Myśliwska. 2013. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes. Human Immunology 74: 701–707.PubMedCrossRef Ryba-Stanisławowska, M., M. Skrzypkowska, M. Myśliwiec, and J. Myśliwska. 2013. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes. Human Immunology 74: 701–707.PubMedCrossRef
64.
go back to reference Honkanen, J., J.K. Nieminen, R. Gao, K. Luopajarvi, H.M. Salo, J. Ilonen, M. Knip, T. Otonkoski, and O. Vaarala. 2010. IL-17 immunity in human type 1 diabetes. Journal of Immunology 185: 1959–1967.CrossRef Honkanen, J., J.K. Nieminen, R. Gao, K. Luopajarvi, H.M. Salo, J. Ilonen, M. Knip, T. Otonkoski, and O. Vaarala. 2010. IL-17 immunity in human type 1 diabetes. Journal of Immunology 185: 1959–1967.CrossRef
Metadata
Title
Elevated Levels of Serum IL-12 and IL-18 are Associated with Lower Frequencies of CD4+CD25highFOXP3+ Regulatory T cells in Young Patients with Type 1 Diabetes
Authors
Monika Ryba-Stanisławowska
Karolina Rybarczyk-Kapturska
Małgorzata Myśliwiec
Jolanta Myśliwska
Publication date
01-10-2014
Publisher
Springer US
Published in
Inflammation / Issue 5/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9878-1

Other articles of this Issue 5/2014

Inflammation 5/2014 Go to the issue