Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Electroencephalography | Research

Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient

Authors: Chang-Hee Han, Yong-Wook Kim, Do Yeon Kim, Seung Hyun Kim, Zoran Nenadic, Chang-Hwan Im

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Brain–computer interfaces (BCIs) have demonstrated the potential to provide paralyzed individuals with new means of communication, but an electroencephalography (EEG)-based endogenous BCI has never been successfully used for communication with a patient in a completely locked-in state (CLIS).

Methods

In this study, we investigated the possibility of using an EEG-based endogenous BCI paradigm for online binary communication by a patient in CLIS. A female patient in CLIS participated in this study. She had not communicated even with her family for more than one year with complete loss of motor function. Offline and online experiments were conducted to validate the feasibility of the proposed BCI system. In the offline experiment, we determined the best combination of mental tasks and the optimal classification strategy leading to the best performance. In the online experiment, we investigated whether our BCI system could be potentially used for real-time communication with the patient.

Results

An online classification accuracy of 87.5% was achieved when Riemannian geometry-based classification was applied to real-time EEG data recorded while the patient was performing one of two mental-imagery tasks for 5 s.

Conclusions

Our results suggest that an EEG-based endogenous BCI has the potential to be used for online communication with a patient in CLIS.
Literature
1.
go back to reference Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164–73.PubMedCrossRef Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164–73.PubMedCrossRef
2.
3.
go back to reference Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223(1):229–37.PubMedCrossRef Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223(1):229–37.PubMedCrossRef
4.
go back to reference Nijboer F, Sellers E, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski D, Vaughan T. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.PubMedPubMedCentralCrossRef Nijboer F, Sellers E, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski D, Vaughan T. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.PubMedPubMedCentralCrossRef
5.
go back to reference Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, Schoelkopf B, Birbaumer N, Gharabaghi A. Transition from the locked in to the completely locked-in state: a physiological analysis. Clin Neurophysiol. 2011;122(5):925–33.PubMedCrossRef Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, Schoelkopf B, Birbaumer N, Gharabaghi A. Transition from the locked in to the completely locked-in state: a physiological analysis. Clin Neurophysiol. 2011;122(5):925–33.PubMedCrossRef
6.
go back to reference Noirhomme Q, Kitney RI, Macq B. Single-trial EEG source reconstruction for brain–computer interface. IEEE Trans Biomed Eng. 2008;55(5):1592–601.PubMedCrossRef Noirhomme Q, Kitney RI, Macq B. Single-trial EEG source reconstruction for brain–computer interface. IEEE Trans Biomed Eng. 2008;55(5):1592–601.PubMedCrossRef
7.
go back to reference Müller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng. 2005;2(4):123.PubMedCrossRef Müller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng. 2005;2(4):123.PubMedCrossRef
8.
go back to reference Han C, Xu G, Xie J, Chen C, Zhang S. Highly interactive brain-computer interface based on flicker-free steady-state motion visual evoked potential. Sci Rep. 2018;8:5835.PubMedPubMedCentralCrossRef Han C, Xu G, Xie J, Chen C, Zhang S. Highly interactive brain-computer interface based on flicker-free steady-state motion visual evoked potential. Sci Rep. 2018;8:5835.PubMedPubMedCentralCrossRef
9.
go back to reference Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR. A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol. 2006;73(3):242–52.PubMedCrossRef Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR. A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol. 2006;73(3):242–52.PubMedCrossRef
10.
go back to reference Xu M, Xiao X, Wang Y, Qi H, Jung T-P, Ming D. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng. 2018;65(5):1166–75.PubMedCrossRef Xu M, Xiao X, Wang Y, Qi H, Jung T-P, Ming D. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng. 2018;65(5):1166–75.PubMedCrossRef
11.
go back to reference Onose G, Grozea C, Anghelescu A, Daia C, Sinescu C, Ciurea A, Spircu T, Mirea A, Andone I, Spânu A. On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 2012;50(8):599–608.PubMedCrossRef Onose G, Grozea C, Anghelescu A, Daia C, Sinescu C, Ciurea A, Spircu T, Mirea A, Andone I, Spânu A. On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 2012;50(8):599–608.PubMedCrossRef
12.
go back to reference Shin J, Kwon J, Im C-H. A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state. Front Neuroinform. 2018;12(5):00005.CrossRef Shin J, Kwon J, Im C-H. A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state. Front Neuroinform. 2018;12(5):00005.CrossRef
13.
go back to reference Popescu F, Fazli S, Badower Y, Blankertz B, Müller K-R. Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS One. 2007;2(7):e637.PubMedPubMedCentralCrossRef Popescu F, Fazli S, Badower Y, Blankertz B, Müller K-R. Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS One. 2007;2(7):e637.PubMedPubMedCentralCrossRef
14.
go back to reference Blankertz B, Dornhege G, Krauledat M, Muller K-R, Kunzmann V, Losch F, Curio G. The Berlin brain-computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil. 2006;14(2):147–52.CrossRef Blankertz B, Dornhege G, Krauledat M, Muller K-R, Kunzmann V, Losch F, Curio G. The Berlin brain-computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil. 2006;14(2):147–52.CrossRef
15.
go back to reference Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.PubMedCrossRef Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.PubMedCrossRef
16.
go back to reference Bai O, Lin P, Huang D, Fei D-Y, Floeter MK. Towards a user-friendly brain–computer interface: initial tests in ALS and PLS patients. Clin Neurophysiol. 2010;121(8):1293–303.PubMedPubMedCentralCrossRef Bai O, Lin P, Huang D, Fei D-Y, Floeter MK. Towards a user-friendly brain–computer interface: initial tests in ALS and PLS patients. Clin Neurophysiol. 2010;121(8):1293–303.PubMedPubMedCentralCrossRef
17.
go back to reference Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, Tonin P, Koutsikos K, Beverina F, Piccione F. P300-based brain–computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis. Front Neurosci. 2009;3:60.PubMedPubMedCentral Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, Tonin P, Koutsikos K, Beverina F, Piccione F. P300-based brain–computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis. Front Neurosci. 2009;3:60.PubMedPubMedCentral
18.
go back to reference Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin DJ, Sellers EW, Wolpaw JR. EEG correlates of P300-based brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng. 2012;9(2):026014.PubMedCrossRef Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin DJ, Sellers EW, Wolpaw JR. EEG correlates of P300-based brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng. 2012;9(2):026014.PubMedCrossRef
19.
go back to reference Birbaumer N, Piccione F, Silvoni S, Wildgruber M. Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychol Res. 2012;76(2):183–91.PubMedCrossRef Birbaumer N, Piccione F, Silvoni S, Wildgruber M. Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychol Res. 2012;76(2):183–91.PubMedCrossRef
20.
go back to reference Fomina T, Lohmann G, Erb M, Ethofer T, Schölkopf B, Grosse-Wentrup M. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS. J Neural Eng. 2016;13(6):066021.PubMedCrossRef Fomina T, Lohmann G, Erb M, Ethofer T, Schölkopf B, Grosse-Wentrup M. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS. J Neural Eng. 2016;13(6):066021.PubMedCrossRef
21.
go back to reference De Massari D, Ruf CA, Furdea A, Matuz T, Van Der Heiden L, Halder S, Silvoni S, Birbaumer N. Brain communication in the locked-in state. Brain. 2013;136(6):1989–2000.PubMedCrossRef De Massari D, Ruf CA, Furdea A, Matuz T, Van Der Heiden L, Halder S, Silvoni S, Birbaumer N. Brain communication in the locked-in state. Brain. 2013;136(6):1989–2000.PubMedCrossRef
22.
go back to reference Kübler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B. A brain–computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157(1):90–100.PubMedCrossRef Kübler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B. A brain–computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157(1):90–100.PubMedCrossRef
23.
go back to reference Nijboer F, Birbaumer N, Kübler A. The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study. Front Neurosci. 2010;4:55.PubMedPubMedCentral Nijboer F, Birbaumer N, Kübler A. The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study. Front Neurosci. 2010;4:55.PubMedPubMedCentral
24.
go back to reference Wolpaw JR, Bedlack RS, Reda DJ, Ringer RJ, Banks PG, Vaughan TM, Heckman SM, McCane LM, Carmack CS, Winden S, McFarland DJ, Sellers EW, Shi H, Paine T, Higgins DS, Lo AC, Patwa HS, Hill KJ, Huang GD, Ruff RL. Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology. 2018;91(3):e258–67.PubMedCrossRef Wolpaw JR, Bedlack RS, Reda DJ, Ringer RJ, Banks PG, Vaughan TM, Heckman SM, McCane LM, Carmack CS, Winden S, McFarland DJ, Sellers EW, Shi H, Paine T, Higgins DS, Lo AC, Patwa HS, Hill KJ, Huang GD, Ruff RL. Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology. 2018;91(3):e258–67.PubMedCrossRef
25.
go back to reference Guy V, Soriani MH, Bruno M, Papadopoulo T, Desnuelle C, Clerc M. Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med. 2017;61(1):5–11.PubMedCrossRef Guy V, Soriani MH, Bruno M, Papadopoulo T, Desnuelle C, Clerc M. Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med. 2017;61(1):5–11.PubMedCrossRef
26.
go back to reference Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, La Bella V. Complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci. 2017;11:251.PubMedPubMedCentralCrossRef Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, La Bella V. Complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci. 2017;11:251.PubMedPubMedCentralCrossRef
27.
go back to reference Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. Brain–computer interface–based communication in the completely locked-in state. PLoS Biol. 2017;15(1):e1002593.PubMedPubMedCentralCrossRef Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. Brain–computer interface–based communication in the completely locked-in state. PLoS Biol. 2017;15(1):e1002593.PubMedPubMedCentralCrossRef
28.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Mot Neuron Disord. 2000;1(5):293–9.CrossRef Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Mot Neuron Disord. 2000;1(5):293–9.CrossRef
29.
go back to reference Kim HY, Kim SH. Korean version of amyotrophic lateral sclerosis functional rating scale-revised: a pilot study on the reliability and validity. J Korean Neurol Assoc. 2006;25(2):149–54. Kim HY, Kim SH. Korean version of amyotrophic lateral sclerosis functional rating scale-revised: a pilot study on the reliability and validity. J Korean Neurol Assoc. 2006;25(2):149–54.
30.
go back to reference Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM. Cognitive tasks for driving a brain-computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng. 2004;12(1):48–54.PubMedCrossRef Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM. Cognitive tasks for driving a brain-computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng. 2004;12(1):48–54.PubMedCrossRef
31.
go back to reference Friedrich EV, Scherer R, Neuper C. The effect of distinct mental strategies on classification performance for brain–computer interfaces. Int J Psychophysiol. 2012;84(1):86–94.PubMedCrossRef Friedrich EV, Scherer R, Neuper C. The effect of distinct mental strategies on classification performance for brain–computer interfaces. Int J Psychophysiol. 2012;84(1):86–94.PubMedCrossRef
32.
go back to reference Shim M, Hwang H-J, Kim D-W, Lee S-H, Im C-H. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr Res. 2016;176(2–3):314–9.PubMedCrossRef Shim M, Hwang H-J, Kim D-W, Lee S-H, Im C-H. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr Res. 2016;176(2–3):314–9.PubMedCrossRef
33.
go back to reference Baldeweg T, Richardson A, Watkins S, Foale C, Gruzelier J. Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Ann Neurol. 1999;45(4):495–503.PubMedCrossRef Baldeweg T, Richardson A, Watkins S, Foale C, Gruzelier J. Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Ann Neurol. 1999;45(4):495–503.PubMedCrossRef
34.
go back to reference Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):2544–90.PubMedCrossRef Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):2544–90.PubMedCrossRef
35.
go back to reference Barachant A, Bonnet S, Congedo M, Jutten C. Multiclass brain–computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng. 2012;59(4):920–8.PubMedCrossRef Barachant A, Bonnet S, Congedo M, Jutten C. Multiclass brain–computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng. 2012;59(4):920–8.PubMedCrossRef
36.
go back to reference Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing. 2013;112:172–8.CrossRef Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing. 2013;112:172–8.CrossRef
37.
go back to reference Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1753–62.PubMedCrossRef Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1753–62.PubMedCrossRef
38.
go back to reference Devijver PA, Kittler J. Pattern recognition: a statistical approach: prentice hall; 1982. Devijver PA, Kittler J. Pattern recognition: a statistical approach: prentice hall; 1982.
39.
go back to reference Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng. 2007;4(2):R01.CrossRef Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng. 2007;4(2):R01.CrossRef
40.
go back to reference Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6(11):994–1003.PubMedCrossRef Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6(11):994–1003.PubMedCrossRef
41.
go back to reference Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006;31(1):153–9.PubMedCrossRef Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006;31(1):153–9.PubMedCrossRef
42.
go back to reference McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and Beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12(3):177–86.PubMedCrossRef McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and Beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12(3):177–86.PubMedCrossRef
43.
go back to reference Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.PubMedCrossRef Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.PubMedCrossRef
44.
go back to reference Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface with vibrotactile biofeedback for haptic information. J NeuroEng Rehabil. 2007;4(1):40.PubMedPubMedCentralCrossRef Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface with vibrotactile biofeedback for haptic information. J NeuroEng Rehabil. 2007;4(1):40.PubMedPubMedCentralCrossRef
45.
go back to reference Morash V, Bai O, Furlani S, Lin P, Hallett M. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol. 2008;119(11):2570–8.PubMedPubMedCentralCrossRef Morash V, Bai O, Furlani S, Lin P, Hallett M. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol. 2008;119(11):2570–8.PubMedPubMedCentralCrossRef
46.
go back to reference Lin PT, Sharma K, Holroyd T, Battapady H, Fei D-Y, Bai O. A high performance MEG based BCI using single trial detection of human movement intention. In: Functional Brain Mapping and the Endeavor to Understand the Working Brain. InTech; 2013. p. 17–36. Lin PT, Sharma K, Holroyd T, Battapady H, Fei D-Y, Bai O. A high performance MEG based BCI using single trial detection of human movement intention. In: Functional Brain Mapping and the Endeavor to Understand the Working Brain. InTech; 2013. p. 17–36.
47.
48.
go back to reference Gevins A, Zeitlin G, Doyle J, Yingling C, Schaffer R, Callaway E, Yeager C. Electroencephalogram correlates of higher cortical functions. Science. 1979;203(4381):665–8.PubMedCrossRef Gevins A, Zeitlin G, Doyle J, Yingling C, Schaffer R, Callaway E, Yeager C. Electroencephalogram correlates of higher cortical functions. Science. 1979;203(4381):665–8.PubMedCrossRef
49.
go back to reference Garakh Z, Zaytseva Y, Kapranova A, Fiala O, Horacek J, Shmukler A, Gurovich IY, Strelets VB. EEG correlates of a mental arithmetic task in patients with first episode schizophrenia and schizoaffective disorder. Clin Neurophysiol. 2015;126(11):2090–8.PubMedCrossRef Garakh Z, Zaytseva Y, Kapranova A, Fiala O, Horacek J, Shmukler A, Gurovich IY, Strelets VB. EEG correlates of a mental arithmetic task in patients with first episode schizophrenia and schizoaffective disorder. Clin Neurophysiol. 2015;126(11):2090–8.PubMedCrossRef
50.
go back to reference Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Birbaumer N. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology. 2014;82(21):1930–2.PubMedPubMedCentralCrossRef Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Birbaumer N. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology. 2014;82(21):1930–2.PubMedPubMedCentralCrossRef
51.
go back to reference Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE T Inf Syst. 2007;90(7):1028–37.CrossRef Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE T Inf Syst. 2007;90(7):1028–37.CrossRef
52.
go back to reference Müller-Putz G, Scherer R, Brunner C, Leeb R, Pfurtscheller G. Better than random: a closer look on BCI results. Int J Bioelectromagn. 2008;10(EPFL-ARTICLE-164768):52–5. Müller-Putz G, Scherer R, Brunner C, Leeb R, Pfurtscheller G. Better than random: a closer look on BCI results. Int J Bioelectromagn. 2008;10(EPFL-ARTICLE-164768):52–5.
Metadata
Title
Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient
Authors
Chang-Hee Han
Yong-Wook Kim
Do Yeon Kim
Seung Hyun Kim
Zoran Nenadic
Chang-Hwan Im
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0493-0

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue