Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Stroke | Research

Offline effects of transcranial direct current stimulation on reaction times of lower extremity movements in people after stroke: a pilot cross-over study

Authors: Milou J. M. Coppens, Wouter H. A. Staring, Jorik Nonnekes, Alexander C. H. Geurts, Vivian Weerdesteyn

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has shown promise for rehabilitation after stroke. Ipsilesional anodal tDCS (a-tDCS) over the motor cortex increases corticospinal excitability, while contralesional cathodal tDCS (c-tDCS) restores interhemispheric balance, both resulting in offline improved reaction times of delayed voluntary upper-extremity movements. We aimed to investigate whether tDCS would also have a beneficial effect on delayed leg motor responses after stroke. In addition, we identified whether variability in tDCS effects was associated with the level of leg motor function.

Methods

In a cross-over design, 13 people with chronic stroke completed three 15-min sessions of anodal, cathodal and sham stimulation over the primary motor cortex on separate days in an order balanced across participants. Directly after stimulation, participants performed a comprehensive set of lower-extremity tasks involving the paretic tibialis anterior (TA): voluntary ankle-dorsiflexion, gait initiation, and backward balance perturbation. For all tasks, TA onset latencies were determined. In addition, leg motor function was determined by the Fugl-Meyer Assessment – leg score (FMA-L). Repeated measures ANOVA was used to reveal tDCS effects on reaction times. Pearson correlation coefficients were used to establish the relation between tDCS effects and leg motor function.

Results

For all tasks, TA reaction times did not differ across tDCS sessions. For gait initiation and backward balance perturbation, differences between sham and active stimulation (a-tDCS or c-tDCS) did not correlate with leg motor function. Yet, for ankle dorsiflexion, individual reaction time differences between c-tDCS and sham were strongly associated with FMA-L, with more severely impaired patients exhibiting slower paretic reaction times following c-tDCS.

Conclusion

We found no evidence for offline tDCS-induced benefits. Interestingly, we found that c-tDCS may have unfavorable effects on voluntary control of the paretic leg in severely impaired patients with chronic stroke. This finding points at potential vicarious control from the unaffected hemisphere to the paretic leg. The absence of tDCS-induced effects on gait and balance, two functionally relevant tasks, shows that such motor behavior is inadequately stimulated by currently used tDCS applications.

Trial registration

The study is registered in the Netherlands Trial Register (NL5684; April 13th, 2016).
Literature
1.
go back to reference Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8(330):330re1.PubMedPubMedCentralCrossRef Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8(330):330re1.PubMedPubMedCentralCrossRef
2.
go back to reference Andrade SM, Ferreira JJA, Rufino TS, Medeiros G, Brito JD, da Silva MA, et al. Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol Res. 2017;39(12):1037–43.PubMedCrossRef Andrade SM, Ferreira JJA, Rufino TS, Medeiros G, Brito JD, da Silva MA, et al. Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol Res. 2017;39(12):1037–43.PubMedCrossRef
3.
go back to reference Ghosh S. Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Rev Neurother. 2019;19(2):133–44.PubMedCrossRef Ghosh S. Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Rev Neurother. 2019;19(2):133–44.PubMedCrossRef
4.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.PubMedPubMedCentralCrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.PubMedPubMedCentralCrossRef
5.
go back to reference Ludemann-Podubecka J, Bosl K, Rothhardt S, Verheyden G, Nowak DA. Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci Biobehav Rev. 2014;47:245–59.PubMedCrossRef Ludemann-Podubecka J, Bosl K, Rothhardt S, Verheyden G, Nowak DA. Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci Biobehav Rev. 2014;47:245–59.PubMedCrossRef
6.
go back to reference Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, et al. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res. 1999;124(4):520–4.PubMedCrossRef Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, et al. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res. 1999;124(4):520–4.PubMedCrossRef
7.
go back to reference Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.PubMedCrossRef Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.PubMedCrossRef
8.
go back to reference Stagg CJ, Bachtiar V, O'Shea J, Allman C, Bosnell RA, Kischka U, et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain. 2012;135(Pt 1):276–84.PubMedCrossRef Stagg CJ, Bachtiar V, O'Shea J, Allman C, Bosnell RA, Kischka U, et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain. 2012;135(Pt 1):276–84.PubMedCrossRef
9.
go back to reference Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5.PubMedCrossRef Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5.PubMedCrossRef
10.
go back to reference Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.PubMed Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.PubMed
11.
go back to reference O'Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage. 2014;85(Pt 3):924–33.PubMedCrossRef O'Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage. 2014;85(Pt 3):924–33.PubMedCrossRef
12.
go back to reference Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res. 2007;182(2):281–7.PubMedCrossRef Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res. 2007;182(2):281–7.PubMedCrossRef
13.
go back to reference Chang MC, Kim DY, Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by Transcranial direct current stimulation. Brain Stimul. 2015;8(3):561–6.PubMedCrossRef Chang MC, Kim DY, Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by Transcranial direct current stimulation. Brain Stimul. 2015;8(3):561–6.PubMedCrossRef
14.
go back to reference Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda M, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair. 2011;25(6):565–9.PubMedCrossRef Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda M, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair. 2011;25(6):565–9.PubMedCrossRef
15.
go back to reference Sohn MK, Jee SJ, Kim YW. Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med. 2013;37(6):759–65.PubMedPubMedCentralCrossRef Sohn MK, Jee SJ, Kim YW. Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med. 2013;37(6):759–65.PubMedPubMedCentralCrossRef
16.
go back to reference Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res. 2009;196(3):459–65.PubMedPubMedCentralCrossRef Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res. 2009;196(3):459–65.PubMedPubMedCentralCrossRef
17.
go back to reference Seidel O, Ragert P. Effects of Transcranial direct current stimulation of primary motor cortex on reaction time and tapping performance: a comparison between athletes and non-athletes. Front Hum Neurosci. 2019;13:103.PubMedPubMedCentralCrossRef Seidel O, Ragert P. Effects of Transcranial direct current stimulation of primary motor cortex on reaction time and tapping performance: a comparison between athletes and non-athletes. Front Hum Neurosci. 2019;13:103.PubMedPubMedCentralCrossRef
18.
go back to reference Greenhouse I, King M, Noah S, Maddock RJ, Ivry RB. Individual differences in resting Corticospinal excitability are correlated with reaction time and GABA content in motor cortex. J Neurosci. 2017;37(10):2686–96.PubMedPubMedCentralCrossRef Greenhouse I, King M, Noah S, Maddock RJ, Ivry RB. Individual differences in resting Corticospinal excitability are correlated with reaction time and GABA content in motor cortex. J Neurosci. 2017;37(10):2686–96.PubMedPubMedCentralCrossRef
19.
go back to reference Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15(4):333–43.PubMedCrossRef Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15(4):333–43.PubMedCrossRef
20.
go back to reference Li Y, Fan J, Yang J, He C, Li S. Effects of transcranial direct current stimulation on walking ability after stroke: a systematic review and meta-analysis. Restor Neurol Neurosci. 2018;36(1):59–71.PubMed Li Y, Fan J, Yang J, He C, Li S. Effects of transcranial direct current stimulation on walking ability after stroke: a systematic review and meta-analysis. Restor Neurol Neurosci. 2018;36(1):59–71.PubMed
21.
go back to reference Nonnekes J, Arrogi A, Munneke MA, van Asseldonk EH, Oude Nijhuis LB, Geurts AC, et al. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One. 2014;9(9):e107731.PubMedPubMedCentralCrossRef Nonnekes J, Arrogi A, Munneke MA, van Asseldonk EH, Oude Nijhuis LB, Geurts AC, et al. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One. 2014;9(9):e107731.PubMedPubMedCentralCrossRef
22.
23.
go back to reference de Kam D, Roelofs JMB, Bruijnes A, Geurts ACH, Weerdesteyn V. The next step in understanding impaired reactive balance control in people with stroke: the role of defective early automatic postural responses. Neurorehabil Neural Repair. 2017;31(8):708–16.PubMedPubMedCentralCrossRef de Kam D, Roelofs JMB, Bruijnes A, Geurts ACH, Weerdesteyn V. The next step in understanding impaired reactive balance control in people with stroke: the role of defective early automatic postural responses. Neurorehabil Neural Repair. 2017;31(8):708–16.PubMedPubMedCentralCrossRef
24.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed
25.
go back to reference Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol. 1980;19(6):382–9.PubMedCrossRef Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol. 1980;19(6):382–9.PubMedCrossRef
26.
go back to reference Berg K, Wood-Dauphinee S, Williams J, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11.CrossRef Berg K, Wood-Dauphinee S, Williams J, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11.CrossRef
27.
go back to reference Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, et al. Sensory exam with a quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology. 2004;62(3):461–4.PubMedCrossRef Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, et al. Sensory exam with a quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology. 2004;62(3):461–4.PubMedCrossRef
28.
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.PubMedCrossRef Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.PubMedCrossRef
29.
go back to reference Goh HT, Chan HY, Abdul-Latif L. Aftereffects of 2 noninvasive brain stimulation techniques on corticospinal excitability in persons with chronic stroke: a pilot study. J Neurol Phys Ther. 2015;39(1):15–22.PubMedCrossRef Goh HT, Chan HY, Abdul-Latif L. Aftereffects of 2 noninvasive brain stimulation techniques on corticospinal excitability in persons with chronic stroke: a pilot study. J Neurol Phys Ther. 2015;39(1):15–22.PubMedCrossRef
30.
go back to reference Honeine JL, Schieppati M, Crisafulli O, Do MC. The Neuro-mechanical processes that underlie goal-directed Medio-lateral APA during gait initiation. Front Hum Neurosci. 2016;10:445.PubMedPubMedCentralCrossRef Honeine JL, Schieppati M, Crisafulli O, Do MC. The Neuro-mechanical processes that underlie goal-directed Medio-lateral APA during gait initiation. Front Hum Neurosci. 2016;10:445.PubMedPubMedCentralCrossRef
31.
go back to reference Nonnekes J, de Kam D, Geurts ACH, Weerdesteyn V, Bloem BR. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography. Expert Rev Neurother. 2013;13(12):1303–8.PubMedCrossRef Nonnekes J, de Kam D, Geurts ACH, Weerdesteyn V, Bloem BR. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography. Expert Rev Neurother. 2013;13(12):1303–8.PubMedCrossRef
32.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography. Roessingh Res Dev. 1999;8(2):13–54. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography. Roessingh Res Dev. 1999;8(2):13–54.
33.
go back to reference Nonnekes J, de Niet M, Oude Nijhuis LB, de Bot ST, van de Warrenburg BP, Bloem BR, et al. Mechanisms of postural instability in hereditary spastic paraplegia. J Neurol. 2013;260(9):2387–95.PubMedCrossRef Nonnekes J, de Niet M, Oude Nijhuis LB, de Bot ST, van de Warrenburg BP, Bloem BR, et al. Mechanisms of postural instability in hereditary spastic paraplegia. J Neurol. 2013;260(9):2387–95.PubMedCrossRef
34.
go back to reference Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M. Akinesia in Parkinson's disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology. 1994;44(5):884–91.PubMedCrossRef Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M. Akinesia in Parkinson's disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology. 1994;44(5):884–91.PubMedCrossRef
35.
36.
go back to reference Montenegro RA, Midgley A, Massaferri R, Bernardes W, Okano AH, Farinatti P. Bihemispheric motor cortex Transcranial direct current stimulation improves force steadiness in post-stroke Hemiparetic patients: a randomized crossover controlled trial. Front Hum Neurosci. 2016;10:426.PubMedPubMedCentralCrossRef Montenegro RA, Midgley A, Massaferri R, Bernardes W, Okano AH, Farinatti P. Bihemispheric motor cortex Transcranial direct current stimulation improves force steadiness in post-stroke Hemiparetic patients: a randomized crossover controlled trial. Front Hum Neurosci. 2016;10:426.PubMedPubMedCentralCrossRef
37.
go back to reference Kindred JH, Kautz SA, Wonsetler EC, Bowden MG. Single sessions of high-definition Transcranial direct current stimulation Do not Alter lower extremity biomechanical or Corticomotor response variables post-stroke. Front Neurosci. 2019;13:286.PubMedPubMedCentralCrossRef Kindred JH, Kautz SA, Wonsetler EC, Bowden MG. Single sessions of high-definition Transcranial direct current stimulation Do not Alter lower extremity biomechanical or Corticomotor response variables post-stroke. Front Neurosci. 2019;13:286.PubMedPubMedCentralCrossRef
38.
go back to reference Hordacre B, Moezzi B, Ridding MC. Neuroplasticity and network connectivity of the motor cortex following stroke: a transcranial direct current stimulation study. Hum Brain Mapp. 2018;39(8):3326–39.PubMedCrossRefPubMedCentral Hordacre B, Moezzi B, Ridding MC. Neuroplasticity and network connectivity of the motor cortex following stroke: a transcranial direct current stimulation study. Hum Brain Mapp. 2018;39(8):3326–39.PubMedCrossRefPubMedCentral
39.
go back to reference Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.PubMedCrossRef Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.PubMedCrossRef
40.
go back to reference Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B. Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage. 2010;51(4):1310–8.PubMedCrossRef Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B. Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage. 2010;51(4):1310–8.PubMedCrossRef
41.
go back to reference Lee S, Chung SW, Rogasch NC, Thomson CJ, Worsley RN, Kulkarni J, et al. The influence of endogenous estrogen on transcranial direct current stimulation: a preliminary study. Eur J Neurosci. 2018;48(4):2001–12.PubMedCrossRef Lee S, Chung SW, Rogasch NC, Thomson CJ, Worsley RN, Kulkarni J, et al. The influence of endogenous estrogen on transcranial direct current stimulation: a preliminary study. Eur J Neurosci. 2018;48(4):2001–12.PubMedCrossRef
42.
go back to reference Lopez-Alonso V, Cheeran B, Rio-Rodriguez D, Fernandez-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 2014;7(3):372–80.PubMedCrossRef Lopez-Alonso V, Cheeran B, Rio-Rodriguez D, Fernandez-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 2014;7(3):372–80.PubMedCrossRef
43.
go back to reference van Asseldonk EH, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 2016;9(2):182–90.PubMedCrossRef van Asseldonk EH, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 2016;9(2):182–90.PubMedCrossRef
44.
go back to reference Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.PubMedCrossRef Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.PubMedCrossRef
45.
go back to reference Manoli Z, Parazzini M, Ravazzani P, Samaras T. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation. Med Phys. 2017;44(1):262–71.PubMedCrossRef Manoli Z, Parazzini M, Ravazzani P, Samaras T. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation. Med Phys. 2017;44(1):262–71.PubMedCrossRef
46.
go back to reference Jayaram G, Stinear JW. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol. 2009;26(4):272–9.PubMedCrossRef Jayaram G, Stinear JW. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol. 2009;26(4):272–9.PubMedCrossRef
47.
go back to reference Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22(4):1722–31.PubMedCrossRef Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22(4):1722–31.PubMedCrossRef
48.
go back to reference Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007;114(10):1339–48.CrossRef Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007;114(10):1339–48.CrossRef
49.
go back to reference Fruhauf AMA, Politti F, Dal Corso S, Costa GC, Teodosio ADC, Silva SM, et al. Immediate effect of transcranial direct current stimulation combined with functional electrical stimulation on activity of the tibialis anterior muscle and balance of individuals with hemiparesis stemming from a stroke. J Phys Ther Sci. 2017;29(12):2138–46.PubMedPubMedCentralCrossRef Fruhauf AMA, Politti F, Dal Corso S, Costa GC, Teodosio ADC, Silva SM, et al. Immediate effect of transcranial direct current stimulation combined with functional electrical stimulation on activity of the tibialis anterior muscle and balance of individuals with hemiparesis stemming from a stroke. J Phys Ther Sci. 2017;29(12):2138–46.PubMedPubMedCentralCrossRef
Metadata
Title
Offline effects of transcranial direct current stimulation on reaction times of lower extremity movements in people after stroke: a pilot cross-over study
Authors
Milou J. M. Coppens
Wouter H. A. Staring
Jorik Nonnekes
Alexander C. H. Geurts
Vivian Weerdesteyn
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Stroke
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0604-y

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue