Skip to main content
Top
Published in: BMC Anesthesiology 1/2023

Open Access 01-12-2023 | Electrocardiography | Research

Non-invasive assessment of Pulse Wave Transit Time (PWTT) is a poor predictor for intraoperative fluid responsiveness: a prospective observational trial (best-PWTT study)

Authors: Kimiko Fukui, Johannes M. Wirkus, Erik K. Hartmann, Irene Schmidtmann, Gunther J. Pestel, Eva-Verena Griemert

Published in: BMC Anesthesiology | Issue 1/2023

Login to get access

Abstract

Background

Aim of this study is to test the predictive value of Pulse Wave Transit Time (PWTT) for fluid responsiveness in comparison to the established fluid responsiveness parameters pulse pressure (ΔPP) and corrected flow time (FTc) during major abdominal surgery.

Methods

Forty patients undergoing major abdominal surgery were enrolled with continuous monitoring of PWTT (LifeScope® Modell J BSM-9101 Nihon Kohden Europe GmbH, Rosbach, Germany) and stroke volume (Esophageal Doppler Monitoring CardioQ-ODM®, Deltex Medical Ltd, Chichester, UK). In case of hypovolemia (difference in pulse pressure [∆PP] ≥ 9%, corrected flow time [FTc] ≤ 350 ms) a fluid bolus of 7 ml/kg ideal body weight was administered. Receiver operating characteristics (ROC) curves and corresponding areas under the curve (AUCs) were used to compare different methods of determining PWTT. A Wilcoxon test was used to discriminate fluid responders (increase in stroke volume of ≥ 10%) from non-responders. The predictive value of PWTT for fluid responsiveness was compared by testing for differences between ROC curves of PWTT, ΔPP and FTc using the methods by DeLong.

Results

AUCs (area under the ROC-curve) to predict fluid responsiveness for PWTT-parameters were 0.61 (raw c finger Q), 0.61 (raw c finger R), 0.57 (raw c ear Q), 0.53 (raw c ear R), 0.54 (raw non-c finger Q), 0.52 (raw non-c finger R), 0.50 (raw non-c ear Q), 0.55 (raw non-c ear R), 0.63 (∆ c finger Q), 0.61 (∆ c finger R), 0.64 (∆ c ear Q), 0.66 (∆ c ear R), 0.59 (∆ non-c finger Q), 0.57 (∆ non-c finger R), 0.57 (∆ non-c ear Q), 0.61 (∆ non-c ear R) [raw measurements vs. ∆ = respiratory variation; c = corrected measurements according to Bazett’s formula vs. non-c = uncorrected measurements; Q vs. R = start of PWTT-measurements with Q- or R-wave in ECG; finger vs. ear = pulse oximetry probe location]. Hence, the highest AUC to predict fluid responsiveness by PWTT was achieved by calculating its respiratory variation (∆PWTT), with a pulse oximeter attached to the earlobe, using the R-wave in ECG, and correction by Bazett’s formula (AUC best-PWTT 0.66, 95% CI 0.54–0.79). ∆PWTT was sufficient to discriminate fluid responders from non-responders (p = 0.029). No difference in predicting fluid responsiveness was found between best-PWTT and ∆PP (AUC 0.65, 95% CI 0.51–0.79; p = 0.88), or best-PWTT and FTc (AUC 0.62, 95% CI 0.49–0.75; p = 0.68).

Conclusion

ΔPWTT shows poor ability to predict fluid responsiveness intraoperatively. Moreover, established alternatives ΔPP and FTc did not perform better.

Trial registration

Prior to enrolement on clinicaltrials.gov (NC T03280953; date of registration 13/09/2017).
Appendix
Available only for authorised users
Literature
1.
go back to reference Chong MA, Wang Y, Berbenetz NM, McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35(7):469–83.CrossRefPubMed Chong MA, Wang Y, Berbenetz NM, McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35(7):469–83.CrossRefPubMed
2.
go back to reference Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesthesia and analgesia. 2011;112(6):1384–91.CrossRefPubMed Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesthesia and analgesia. 2011;112(6):1384–91.CrossRefPubMed
3.
go back to reference Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Critical Care. 2011;15(3):R154.CrossRefPubMedPubMedCentral Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Critical Care. 2011;15(3):R154.CrossRefPubMedPubMedCentral
4.
go back to reference Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.CrossRefPubMed Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.CrossRefPubMed
5.
go back to reference Miller TE, Mythen M, Shaw AD, Hwang S, Shenoy AV, Bershad M, et al. Association between perioperative fluid management and patient outcomes: a multicentre retrospective study. Br J Anaesth. 2021;126(3):720-9. Miller TE, Mythen M, Shaw AD, Hwang S, Shenoy AV, Bershad M, et al. Association between perioperative fluid management and patient outcomes: a multicentre retrospective study. Br J Anaesth. 2021;126(3):720-9.
6.
go back to reference Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42(5):1194–203.CrossRefPubMed Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42(5):1194–203.CrossRefPubMed
7.
go back to reference Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4):R197.CrossRefPubMedPubMedCentral Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4):R197.CrossRefPubMedPubMedCentral
9.
go back to reference Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med. 2005;33(11):2534–9.CrossRefPubMed Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med. 2005;33(11):2534–9.CrossRefPubMed
10.
go back to reference Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96(1):337–42.CrossRefPubMed Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96(1):337–42.CrossRefPubMed
11.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRefPubMed Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRefPubMed
13.
go back to reference Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.CrossRefPubMed Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.CrossRefPubMed
14.
go back to reference Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a gray zone approach. Anesthesiology. 2011;115(2):231–41.CrossRefPubMed Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a gray zone approach. Anesthesiology. 2011;115(2):231–41.CrossRefPubMed
15.
go back to reference Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson JL, et al. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35(4):255–60.CrossRefPubMed Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson JL, et al. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35(4):255–60.CrossRefPubMed
16.
go back to reference Bazett HC. An analysis of the time relations of electrocardiograms. Heart. 1920;7:353–70. Bazett HC. An analysis of the time relations of electrocardiograms. Heart. 1920;7:353–70.
17.
go back to reference Ochiai R, Takeda J, Hosaka H, Sugo Y, Tanaka R, Soma T. The relationship between modified pulse wave transit time and cardiovascular changes in isoflurane anesthetized dogs. J Clin Monit Comput. 1999;15(7–8):493–501.CrossRefPubMed Ochiai R, Takeda J, Hosaka H, Sugo Y, Tanaka R, Soma T. The relationship between modified pulse wave transit time and cardiovascular changes in isoflurane anesthetized dogs. J Clin Monit Comput. 1999;15(7–8):493–501.CrossRefPubMed
18.
go back to reference Enders CK. Multiple imputation as a flexible tool for missing data handling in clinical research. Behav Res Ther. 2017;98:4–18.CrossRefPubMed Enders CK. Multiple imputation as a flexible tool for missing data handling in clinical research. Behav Res Ther. 2017;98:4–18.CrossRefPubMed
19.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed
20.
go back to reference Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.CrossRefPubMed Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.CrossRefPubMed
21.
go back to reference Ishihara H, Okawa H, Tanabe K, Tsubo T, Sugo Y, Akiyama T, et al. A new non-invasive continuous cardiac output trend solely utilizing routine cardiovascular monitors. J Clin Monit Comput. 2004;18(5–6):313–20.CrossRefPubMed Ishihara H, Okawa H, Tanabe K, Tsubo T, Sugo Y, Akiyama T, et al. A new non-invasive continuous cardiac output trend solely utilizing routine cardiovascular monitors. J Clin Monit Comput. 2004;18(5–6):313–20.CrossRefPubMed
22.
go back to reference Awad AA, Stout RG, Ghobashy MA, Rezkanna HA, Silverman DG, Shelley KH. Analysis of the ear pulse oximeter waveform. J Clin Monit Comput. 2006;20(3):175–84.CrossRefPubMed Awad AA, Stout RG, Ghobashy MA, Rezkanna HA, Silverman DG, Shelley KH. Analysis of the ear pulse oximeter waveform. J Clin Monit Comput. 2006;20(3):175–84.CrossRefPubMed
23.
go back to reference Yamashita K. Pulse-wave transit time with ventilator-induced variation for the prediction of fluid responsiveness. Acute Medicine & Surgery. 2020;7(1):e484. Yamashita K. Pulse-wave transit time with ventilator-induced variation for the prediction of fluid responsiveness. Acute Medicine & Surgery. 2020;7(1):e484.
24.
go back to reference Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63(1):44–51.CrossRefPubMed Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63(1):44–51.CrossRefPubMed
25.
go back to reference Guinot PG, de Broca B, Abou Arab O, Diouf M, Badoux L, Bernard E, et al. Ability of stroke volume variation measured by oesophageal Doppler monitoring to predict fluid responsiveness during surgery. Br J Anaesth. 2013;110(1):28–33.CrossRefPubMed Guinot PG, de Broca B, Abou Arab O, Diouf M, Badoux L, Bernard E, et al. Ability of stroke volume variation measured by oesophageal Doppler monitoring to predict fluid responsiveness during surgery. Br J Anaesth. 2013;110(1):28–33.CrossRefPubMed
26.
go back to reference Lee JH, Kim JT, Yoon SZ, Lim YJ, Jeon Y, Bahk JH, et al. Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth. 2007;99(3):343–8.CrossRefPubMed Lee JH, Kim JT, Yoon SZ, Lim YJ, Jeon Y, Bahk JH, et al. Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth. 2007;99(3):343–8.CrossRefPubMed
27.
go back to reference Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18(6):650.CrossRefPubMedPubMedCentral Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18(6):650.CrossRefPubMedPubMedCentral
28.
go back to reference Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18(6):587.CrossRefPubMedPubMedCentral Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18(6):587.CrossRefPubMedPubMedCentral
29.
go back to reference Roeck M, Jakob SM, Boehlen T, Brander L, Knuesel R, Takala J. Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med. 2003;29(10):1729–35.CrossRefPubMed Roeck M, Jakob SM, Boehlen T, Brander L, Knuesel R, Takala J. Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med. 2003;29(10):1729–35.CrossRefPubMed
30.
go back to reference Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(1 Pt 2):3s–10s.CrossRefPubMed Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(1 Pt 2):3s–10s.CrossRefPubMed
31.
go back to reference Toscani L, Aya HD, Antonakaki D, Bastoni D, Watson X, Arulkumaran N, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21(1):207.CrossRefPubMedPubMedCentral Toscani L, Aya HD, Antonakaki D, Bastoni D, Watson X, Arulkumaran N, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21(1):207.CrossRefPubMedPubMedCentral
32.
go back to reference Preau S, Dewavrin F, Demaeght V, Chiche A, Voisin B, Minacori F, et al. The use of static and dynamic haemodynamic parameters before volume expansion: A prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35(2):93–102.CrossRefPubMed Preau S, Dewavrin F, Demaeght V, Chiche A, Voisin B, Minacori F, et al. The use of static and dynamic haemodynamic parameters before volume expansion: A prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35(2):93–102.CrossRefPubMed
Metadata
Title
Non-invasive assessment of Pulse Wave Transit Time (PWTT) is a poor predictor for intraoperative fluid responsiveness: a prospective observational trial (best-PWTT study)
Authors
Kimiko Fukui
Johannes M. Wirkus
Erik K. Hartmann
Irene Schmidtmann
Gunther J. Pestel
Eva-Verena Griemert
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2023
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-023-02016-0

Other articles of this Issue 1/2023

BMC Anesthesiology 1/2023 Go to the issue