Skip to main content
Top
Published in: Heart Failure Reviews 3/2011

Open Access 01-05-2011

Electrical modalities beyond pacing for the treatment of heart failure

Authors: Richard N. Cornelussen, Vincent Splett, Ruth Nicholson Klepfer, Berthold Stegemann, Lilian Kornet, Frits W. Prinzen

Published in: Heart Failure Reviews | Issue 3/2011

Login to get access

Abstract

In this review, we report on electrical modalities, which do not fit the definition of pacemaker, but increase cardiac performance either by direct application to the heart (e.g., post-extrasystolic potentiation or non-excitatory stimulation) or indirectly through activation of the nervous system (e.g., vagal or sympathetic activation). The physiological background of the possible mechanisms of these electrical modalities and their potential application to treat heart failure are discussed.
Literature
1.
go back to reference Packer M et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N Engl J Med 325(21):1468–1475CrossRefPubMed Packer M et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N Engl J Med 325(21):1468–1475CrossRefPubMed
2.
go back to reference O’Connor CM et al (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 138(1):78–86CrossRefPubMed O’Connor CM et al (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 138(1):78–86CrossRefPubMed
3.
go back to reference Cooper MW (1993) Postextrasystolic potentiation. Do we really know what it means and how to use it? Circulation 88(6):2962–2971PubMed Cooper MW (1993) Postextrasystolic potentiation. Do we really know what it means and how to use it? Circulation 88(6):2962–2971PubMed
4.
go back to reference Kuijer PJ, van der Werf T, Meijler FL (1990) Post-extrasystolic potentiation without a compensatory pause in normal and diseased hearts. Br Heart J 63(5):284–286CrossRefPubMed Kuijer PJ, van der Werf T, Meijler FL (1990) Post-extrasystolic potentiation without a compensatory pause in normal and diseased hearts. Br Heart J 63(5):284–286CrossRefPubMed
5.
go back to reference Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2 +] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82(4):1266–1278PubMed Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2 +] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82(4):1266–1278PubMed
6.
go back to reference Braunwald E et al (1964) Clinical observations on paired electrical stimulation of the heart. Effects on ventricular performance and heart rate. Am J Med 37:700–711CrossRefPubMed Braunwald E et al (1964) Clinical observations on paired electrical stimulation of the heart. Effects on ventricular performance and heart rate. Am J Med 37:700–711CrossRefPubMed
7.
go back to reference Frommer PL (1965) Studies on coupled pacing technique and some comments on paired electrical stimulation. Bull N Y Acad Med 41:670–680PubMed Frommer PL (1965) Studies on coupled pacing technique and some comments on paired electrical stimulation. Bull N Y Acad Med 41:670–680PubMed
8.
go back to reference Frommer PL, Robinson BF, Braunwald E (1966) Paired electrical stimulation. A comparison of the effects on performance of the failing and nonfailing heart. Am J Cardiol 18(5):738–744CrossRefPubMed Frommer PL, Robinson BF, Braunwald E (1966) Paired electrical stimulation. A comparison of the effects on performance of the failing and nonfailing heart. Am J Cardiol 18(5):738–744CrossRefPubMed
9.
go back to reference Rothfeld EL et al (1969) Paired pacing after coronary artery ligation. Am J Cardiol 23(2):224–228CrossRefPubMed Rothfeld EL et al (1969) Paired pacing after coronary artery ligation. Am J Cardiol 23(2):224–228CrossRefPubMed
10.
go back to reference Gourgon R et al (1968) Ventricular coupled pacing in myocardial infarction with severe cardiocirculatory insufficiency. In: Cranefield P, Hoffman B (eds) Paired Pulse Stimulation of the Heart. The Rockefeller University Press, New York, pp 36–51 Gourgon R et al (1968) Ventricular coupled pacing in myocardial infarction with severe cardiocirculatory insufficiency. In: Cranefield P, Hoffman B (eds) Paired Pulse Stimulation of the Heart. The Rockefeller University Press, New York, pp 36–51
11.
go back to reference Lieberman RA et al (2008) The acute hemodynamic response to dual chamber coupled pacing in heart failure patients. J Card Fail 14(6):s27CrossRef Lieberman RA et al (2008) The acute hemodynamic response to dual chamber coupled pacing in heart failure patients. J Card Fail 14(6):s27CrossRef
12.
go back to reference Lieberman RA et al (2008) The acute hemodynamic response to dual chamber coupled pacing in heart failure patients. J Cardiac Failure 14(6):s58CrossRef Lieberman RA et al (2008) The acute hemodynamic response to dual chamber coupled pacing in heart failure patients. J Cardiac Failure 14(6):s58CrossRef
13.
go back to reference Geschwind HJ et al (1984) Sympathetic nervous system activation in postextrasystolic potentiation: role of catecholamine release in enhancement of ventricular function. J Am Coll Cardiol 4(2):216–225CrossRefPubMed Geschwind HJ et al (1984) Sympathetic nervous system activation in postextrasystolic potentiation: role of catecholamine release in enhancement of ventricular function. J Am Coll Cardiol 4(2):216–225CrossRefPubMed
14.
go back to reference Lau CP et al (1990) A new pacing method for rapid regularization and rate control in atrial fibrillation. Am J Cardiol 65(18):1198–1203CrossRefPubMed Lau CP et al (1990) A new pacing method for rapid regularization and rate control in atrial fibrillation. Am J Cardiol 65(18):1198–1203CrossRefPubMed
15.
go back to reference Mischke K et al (2006) Paired ventricular stimulation: an approach for hemodynamic stabilization during ventricular tachycardia. J Am Coll Cardiol 47(11):2337–2339CrossRefPubMed Mischke K et al (2006) Paired ventricular stimulation: an approach for hemodynamic stabilization during ventricular tachycardia. J Am Coll Cardiol 47(11):2337–2339CrossRefPubMed
16.
go back to reference Blinks Jr (1966) Field stimulation as a means of effecting the graded release of autonomic transmitters in isolated heart muscle. J Pharmacol Exp Ther 151(2):221–235PubMed Blinks Jr (1966) Field stimulation as a means of effecting the graded release of autonomic transmitters in isolated heart muscle. J Pharmacol Exp Ther 151(2):221–235PubMed
17.
go back to reference Euler DE (1980) Release of autonomic neuromediators by local ventricular electrical stimulation. Am J Physiol Heart Circ Physiol 238(6):H794–H800 Euler DE (1980) Release of autonomic neuromediators by local ventricular electrical stimulation. Am J Physiol Heart Circ Physiol 238(6):H794–H800
18.
go back to reference Mohri S et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282(5):H1642–H1647PubMed Mohri S et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282(5):H1642–H1647PubMed
19.
go back to reference Berbari EJ et al (1973) Noninvasive technique for detection of electrical activity during the P-R segment. Circulation 48(5):1005–1013PubMed Berbari EJ et al (1973) Noninvasive technique for detection of electrical activity during the P-R segment. Circulation 48(5):1005–1013PubMed
20.
go back to reference Brady AJ, Abbott BC, Mommaerts WF (1960) Inotropic effects of trains of impulses applied during the contraction of cardiac muscle. J Gen Physiol 44(2):415–432CrossRefPubMed Brady AJ, Abbott BC, Mommaerts WF (1960) Inotropic effects of trains of impulses applied during the contraction of cardiac muscle. J Gen Physiol 44(2):415–432CrossRefPubMed
21.
go back to reference Brunckhorst CB et al (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail 8(1):7–15CrossRefPubMed Brunckhorst CB et al (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail 8(1):7–15CrossRefPubMed
22.
go back to reference Schauerte P et al (2001) Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system. J Cardiovasc Electrophysiol 12(5):592–599CrossRefPubMed Schauerte P et al (2001) Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system. J Cardiovasc Electrophysiol 12(5):592–599CrossRefPubMed
23.
go back to reference Mohri S et al (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol 284(4):H1119–H1123PubMed Mohri S et al (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol 284(4):H1119–H1123PubMed
24.
go back to reference Morita H et al (2004) Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur J Heart Fail 6(2):145–150CrossRefPubMed Morita H et al (2004) Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur J Heart Fail 6(2):145–150CrossRefPubMed
25.
go back to reference Chaudhry PA et al (2001) Acute ventricular reduction with the acorn cardiac support device: effect on progressive left ventricular dysfunction and dilation in dogs with chronic heart failure. J Card Surg 16(2):118–126CrossRefPubMed Chaudhry PA et al (2001) Acute ventricular reduction with the acorn cardiac support device: effect on progressive left ventricular dysfunction and dilation in dogs with chronic heart failure. J Card Surg 16(2):118–126CrossRefPubMed
26.
go back to reference Zhang H, Cui C, Hu D (2010) Effects of electric stimulations applied during absolute refractory period on cardiac function of rabbits with heart failure. J Huazhong Univ Sci Technolog Med Sci 30(2):155–158CrossRefPubMed Zhang H, Cui C, Hu D (2010) Effects of electric stimulations applied during absolute refractory period on cardiac function of rabbits with heart failure. J Huazhong Univ Sci Technolog Med Sci 30(2):155–158CrossRefPubMed
27.
go back to reference Cornelussen RN et al (2008) Contractility augmentation induced by refractory period stimulation depends upon pacing-site and diminishes over time. Circulation 118:S726 Cornelussen RN et al (2008) Contractility augmentation induced by refractory period stimulation depends upon pacing-site and diminishes over time. Circulation 118:S726
28.
go back to reference Imai M et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49(21):2120–2128CrossRefPubMed Imai M et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49(21):2120–2128CrossRefPubMed
29.
go back to reference Gupta RC et al (2009) Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na + -Ca2 + exchanger in heart failure. J Card Fail 15(1):48–56CrossRefPubMed Gupta RC et al (2009) Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na + -Ca2 + exchanger in heart failure. J Card Fail 15(1):48–56CrossRefPubMed
30.
go back to reference Rastogi S et al (2008) Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology 110(4):230–237CrossRefPubMed Rastogi S et al (2008) Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology 110(4):230–237CrossRefPubMed
31.
go back to reference Pappone C et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427CrossRefPubMed Pappone C et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427CrossRefPubMed
32.
go back to reference Nägele H, Behrens S, Eisermann C (2008) Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. Europace 10(12):1375–1380CrossRefPubMed Nägele H, Behrens S, Eisermann C (2008) Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. Europace 10(12):1375–1380CrossRefPubMed
33.
go back to reference Yu C-M et al (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2(12):1341–1349CrossRefPubMed Yu C-M et al (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2(12):1341–1349CrossRefPubMed
34.
go back to reference Borggrefe MM et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028CrossRefPubMed Borggrefe MM et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028CrossRefPubMed
35.
go back to reference Butter C et al (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51(18):1784–1789CrossRefPubMed Butter C et al (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51(18):1784–1789CrossRefPubMed
36.
go back to reference Abraham WT et al (2008) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics. Am Heart J 156(4):641–648CrossRefPubMed Abraham WT et al (2008) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics. Am Heart J 156(4):641–648CrossRefPubMed
37.
go back to reference Cleland JGF et al (2009) Clinical trials update from the American College of Cardiology 2009: ADMIRE-HF, PRIMA, STICH, REVERSE, IRIS, partial ventricular support, FIX-HF-5, vagal stimulation, REVIVAL-3, pre-RELAX-AHF, ACTIVE-A, HF-ACTION, JUPITER, AURORA, and OMEGA. Eur J Heart Fail 11(6):622–630CrossRefPubMed Cleland JGF et al (2009) Clinical trials update from the American College of Cardiology 2009: ADMIRE-HF, PRIMA, STICH, REVERSE, IRIS, partial ventricular support, FIX-HF-5, vagal stimulation, REVIVAL-3, pre-RELAX-AHF, ACTIVE-A, HF-ACTION, JUPITER, AURORA, and OMEGA. Eur J Heart Fail 11(6):622–630CrossRefPubMed
38.
go back to reference Abraham WT (2009) Multicenter randomized controlled trial of cardiac contractility modulation in patient with advanced heart failure. In: American College of Cardiology Orlando, Florida Abraham WT (2009) Multicenter randomized controlled trial of cardiac contractility modulation in patient with advanced heart failure. In: American College of Cardiology Orlando, Florida
39.
go back to reference Butter C et al (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142CrossRefPubMed Butter C et al (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142CrossRefPubMed
40.
go back to reference Shuros AC et al (2007) Ventricular preexcitation modulates strain and attenuates cardiac remodeling in a swine model of myocardial infarction. Circulation 116(10):1162–1169CrossRefPubMed Shuros AC et al (2007) Ventricular preexcitation modulates strain and attenuates cardiac remodeling in a swine model of myocardial infarction. Circulation 116(10):1162–1169CrossRefPubMed
41.
go back to reference Prinzen FW et al (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33(6):1735–1742CrossRefPubMed Prinzen FW et al (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33(6):1735–1742CrossRefPubMed
42.
go back to reference Heerdt PM et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719PubMed Heerdt PM et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719PubMed
43.
go back to reference Jugdutt BI, Butler C (2007) Ventricular unloading tissue angiotensin II, matrix modulation, and function during left ventricular assist device support. J Am Coll Cardiol 49(11):1175–1177CrossRefPubMed Jugdutt BI, Butler C (2007) Ventricular unloading tissue angiotensin II, matrix modulation, and function during left ventricular assist device support. J Am Coll Cardiol 49(11):1175–1177CrossRefPubMed
44.
go back to reference Califf RM, O’Connor CM (2000) Beta-blocker therapy for heart failure: the evidence is in now the work begins. JAMA 283(10):1335–1337CrossRefPubMed Califf RM, O’Connor CM (2000) Beta-blocker therapy for heart failure: the evidence is in now the work begins. JAMA 283(10):1335–1337CrossRefPubMed
45.
go back to reference Saba S et al (2008) Prevention of adverse electrical and mechanical remodeling with biventricular pacing in a rabbit model of myocardial infarction. Heart Rhythm 5(1):124–130CrossRefPubMed Saba S et al (2008) Prevention of adverse electrical and mechanical remodeling with biventricular pacing in a rabbit model of myocardial infarction. Heart Rhythm 5(1):124–130CrossRefPubMed
46.
go back to reference Mukherjee R, et al. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 299(1): H217–24 Mukherjee R, et al. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 299(1): H217–24
47.
go back to reference Garcia RA et al (2005) Abnormal cardiac wall motion and early matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 288(3):H1080–H1087CrossRefPubMed Garcia RA et al (2005) Abnormal cardiac wall motion and early matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 288(3):H1080–H1087CrossRefPubMed
48.
go back to reference Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342CrossRefPubMed Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342CrossRefPubMed
49.
go back to reference Mukherjee R et al (2010) Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation 122(1):20–32CrossRefPubMed Mukherjee R et al (2010) Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation 122(1):20–32CrossRefPubMed
50.
go back to reference Brighton CT, Wang W, Clark CC (2008) The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am 90(4):833–848CrossRefPubMed Brighton CT, Wang W, Clark CC (2008) The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am 90(4):833–848CrossRefPubMed
51.
go back to reference Chung ES et al (2007) Feasibility of biventricular pacing in patients with recent myocardial infarction: impact on ventricular remodeling. Congest Heart Fail 13(1):9–15CrossRefPubMed Chung ES et al (2007) Feasibility of biventricular pacing in patients with recent myocardial infarction: impact on ventricular remodeling. Congest Heart Fail 13(1):9–15CrossRefPubMed
52.
go back to reference Chung ES et al (2009) Peri-infarct pacing with CRT in the early postinfarct phase to attenuate long-term remodeling. J Cardiovasc Transl Res 2(1):126–129CrossRefPubMed Chung ES et al (2009) Peri-infarct pacing with CRT in the early postinfarct phase to attenuate long-term remodeling. J Cardiovasc Transl Res 2(1):126–129CrossRefPubMed
53.
go back to reference Chung ES et al (2010) Effect of peri-infarct pacing early after myocardial infarction: results of the prevention of myocardial enlargement and dilatation post myocardial infarction study. Circ Heart Fail 3(6):650–658CrossRefPubMed Chung ES et al (2010) Effect of peri-infarct pacing early after myocardial infarction: results of the prevention of myocardial enlargement and dilatation post myocardial infarction study. Circ Heart Fail 3(6):650–658CrossRefPubMed
54.
go back to reference Lewis ME et al (2001) Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J Physiol 534(Pt. 2):547–552CrossRefPubMed Lewis ME et al (2001) Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J Physiol 534(Pt. 2):547–552CrossRefPubMed
55.
go back to reference Gatti PJ et al (1997) Vagal control of left ventricular contractility is selectively mediated by a cranioventricular intracardiac ganglion in the cat. J Auton Nerv Syst 66(3):138–144CrossRefPubMed Gatti PJ et al (1997) Vagal control of left ventricular contractility is selectively mediated by a cranioventricular intracardiac ganglion in the cat. J Auton Nerv Syst 66(3):138–144CrossRefPubMed
56.
go back to reference Blinder KJ et al (1998) Control of negative inotropic vagal preganglionic neurons in the dog: synaptic interactions with substance P afferent terminals in the nucleus ambiguus? Brain Res 810(1–2):251–256CrossRefPubMed Blinder KJ et al (1998) Control of negative inotropic vagal preganglionic neurons in the dog: synaptic interactions with substance P afferent terminals in the nucleus ambiguus? Brain Res 810(1–2):251–256CrossRefPubMed
57.
go back to reference Matsuura W et al (1997) Vagal stimulation decreases left ventricular contractility mainly through negative chronotropic effect. Am J Physiol 273(2 Pt 2): H534–9 Matsuura W et al (1997) Vagal stimulation decreases left ventricular contractility mainly through negative chronotropic effect. Am J Physiol 273(2 Pt 2): H534–9
58.
go back to reference Sabbah H et al (2005) Long-term therapy with neuroselectiveelectric vagus nerve stimulation improves LV function and attenuates global LV remodeling in dogs with chronic heart failure. Eur J Heart Fail 166: 166 (Abstract) Sabbah H et al (2005) Long-term therapy with neuroselectiveelectric vagus nerve stimulation improves LV function and attenuates global LV remodeling in dogs with chronic heart failure. Eur J Heart Fail 166: 166 (Abstract)
59.
go back to reference Zhang Y et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699CrossRefPubMed Zhang Y et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699CrossRefPubMed
60.
go back to reference Li M et al (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109(1):120–124CrossRefPubMed Li M et al (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109(1):120–124CrossRefPubMed
61.
go back to reference Uemura K et al (2010) Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. J Card Fail 16(8):689–699CrossRefPubMed Uemura K et al (2010) Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. J Card Fail 16(8):689–699CrossRefPubMed
62.
go back to reference De Ferrari GM, Sanzo A, Schwartz PJ (2009) Chronic vagal stimulation in patients with congestive heart failure. Conf Proc IEEE Eng Med Biol Soc 2009:2037–2039PubMed De Ferrari GM, Sanzo A, Schwartz PJ (2009) Chronic vagal stimulation in patients with congestive heart failure. Conf Proc IEEE Eng Med Biol Soc 2009:2037–2039PubMed
63.
go back to reference Zarse M et al (2005) Selective increase of cardiac neuronal sympathetic tone: a catheter-based access to modulate left ventricular contractility. J Am Coll Cardiol 46(7):1354–1359CrossRefPubMed Zarse M et al (2005) Selective increase of cardiac neuronal sympathetic tone: a catheter-based access to modulate left ventricular contractility. J Am Coll Cardiol 46(7):1354–1359CrossRefPubMed
64.
go back to reference Meyer C et al (2010) Augmentation of left ventricular contractility by cardiac sympathetic neural stimulation. Circulation 121(11):1286–1294CrossRefPubMed Meyer C et al (2010) Augmentation of left ventricular contractility by cardiac sympathetic neural stimulation. Circulation 121(11):1286–1294CrossRefPubMed
65.
go back to reference Watson-Wright WM et al (1992) Prolonged supramaximal stimulation of canine efferent sympathetic neurons induces desensitization of inotropic responses without a change in myocardial beta-adrenergic receptors. Can J Cardiol 8(2):177–186PubMed Watson-Wright WM et al (1992) Prolonged supramaximal stimulation of canine efferent sympathetic neurons induces desensitization of inotropic responses without a change in myocardial beta-adrenergic receptors. Can J Cardiol 8(2):177–186PubMed
66.
go back to reference Sanderson JE et al (1994) Spinal electrical stimulation for intractable angina–long-term clinical outcome and safety. Eur Heart J 15(6):810–814PubMed Sanderson JE et al (1994) Spinal electrical stimulation for intractable angina–long-term clinical outcome and safety. Eur Heart J 15(6):810–814PubMed
67.
go back to reference Eliasson T, Augustinsson LE, Mannheimer C (1996) Spinal cord stimulation in severe angina pectoris–presentation of current studies indications and clinical experience. Pain 65(2–3):169–179CrossRefPubMed Eliasson T, Augustinsson LE, Mannheimer C (1996) Spinal cord stimulation in severe angina pectoris–presentation of current studies indications and clinical experience. Pain 65(2–3):169–179CrossRefPubMed
68.
go back to reference Bacal F et al (2005) Normalization of right ventricular performance and remodeling evaluated by magnetic resonance imaging at late follow-up of heart transplantation: relationship between function, exercise capacity and pulmonary vascular resistance. J Heart Lung Transplant 24(12):2031–2036CrossRefPubMed Bacal F et al (2005) Normalization of right ventricular performance and remodeling evaluated by magnetic resonance imaging at late follow-up of heart transplantation: relationship between function, exercise capacity and pulmonary vascular resistance. J Heart Lung Transplant 24(12):2031–2036CrossRefPubMed
69.
go back to reference Meyerson BA, Linderoth B (2006) Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 31(4 Suppl):S6–S12CrossRefPubMed Meyerson BA, Linderoth B (2006) Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 31(4 Suppl):S6–S12CrossRefPubMed
70.
go back to reference Wu M et al (2006) Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res 1107(1):177–184CrossRefPubMed Wu M et al (2006) Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res 1107(1):177–184CrossRefPubMed
71.
go back to reference Wu M, Linderoth B, Foreman RD (2008) Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 138(1–2):9–23CrossRefPubMed Wu M, Linderoth B, Foreman RD (2008) Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 138(1–2):9–23CrossRefPubMed
72.
go back to reference Lopshire JC et al (2009) Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120(4):286–294CrossRefPubMed Lopshire JC et al (2009) Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120(4):286–294CrossRefPubMed
Metadata
Title
Electrical modalities beyond pacing for the treatment of heart failure
Authors
Richard N. Cornelussen
Vincent Splett
Ruth Nicholson Klepfer
Berthold Stegemann
Lilian Kornet
Frits W. Prinzen
Publication date
01-05-2011
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 3/2011
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-010-9206-2

Other articles of this Issue 3/2011

Heart Failure Reviews 3/2011 Go to the issue