Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2013

01-07-2013 | Original Article

Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles

Authors: Rodney A. Rosalia, Ana Luisa Silva, Marcel Camps, Ahmed Allam, Wim Jiskoot, Sjoerd H. van der Burg, Ferry Ossendorp, Jaap Oostendorp

Published in: Cancer Immunology, Immunotherapy | Issue 7/2013

Login to get access

Abstract

Protein antigen (Ag)-based immunotherapies have the advantage to induce T cells with a potentially broad repertoire of specificities. However, soluble protein Ag is generally poorly cross-presented in MHC class I molecules and not efficient in inducing robust cytotoxic CD8+ T cell responses. In the present study, we have applied poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) which strongly improve protein Ag presentation by dendritic cells (DC) in the absence of additional Toll-like receptor ligands or targeting devices. Protein Ag-loaded DC were used as antigen presenting cells to stimulate T cells in vitro and subsequently analyzed in vivo for their anti-tumor effect via adoptive transfer, a treatment strategy widely studied in clinical trials as a therapy against various malignancies. In a direct comparison with soluble protein Ag, we show that DC presentation of protein encapsulated in plain PLGA-NP results in efficient activation of CD4+ and CD8+ T cells as reflected by high numbers of activated CD69+ and CD25+, interferon (IFN)-γ and interleukin (IL)-2-producing T cells. Adoptive transfer of PLGA-NP-activated CD8+ T cells in tumor-bearing mice displayed good in vivo expansion capacity, potent Ag-specific cytotoxicity and IFN-γ cytokine production, resulting in curing mice with established tumors. We conclude that delivery of protein Ag through encapsulation in plain PLGA-NP is a very efficient and simple procedure to stimulate potent anti-tumor T cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMedCrossRef Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMedCrossRef
3.
go back to reference Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58CrossRef Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58CrossRef
4.
go back to reference Petersen TR, Dickgreber N, Hermans IF (2010) Tumor antigen presentation by dendritic cells. Crit Rev Immunol 30(4):345–386PubMedCrossRef Petersen TR, Dickgreber N, Hermans IF (2010) Tumor antigen presentation by dendritic cells. Crit Rev Immunol 30(4):345–386PubMedCrossRef
5.
go back to reference Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462PubMedCrossRef Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462PubMedCrossRef
6.
go back to reference Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187(5):693–702CrossRef Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187(5):693–702CrossRef
7.
go back to reference Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483PubMedCrossRef Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483PubMedCrossRef
8.
go back to reference Blachere NE, Morris HK, Braun D, Saklani H, Di Santo JP, Darnell RB, Albert ML (2006) IL-2 is required for the activation of memory CD8 + T cells via antigen cross-presentation. J Immunol 176(12):7288–7300PubMed Blachere NE, Morris HK, Braun D, Saklani H, Di Santo JP, Darnell RB, Albert ML (2006) IL-2 is required for the activation of memory CD8 + T cells via antigen cross-presentation. J Immunol 176(12):7288–7300PubMed
9.
go back to reference Keene JA, Forman J (1982) Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 155(3):768–782PubMedCrossRef Keene JA, Forman J (1982) Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 155(3):768–782PubMedCrossRef
10.
go back to reference Mischo A, Bubel N, Cebon JS, Samaras P, Petrausch U, Stenner-Liewen F, Schaefer NG, Kubuschok B, Renner C, Wadle A (2011) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad antibody responses in humans, a RAYS-based analysis. Int J Oncol 39(1):287–294PubMed Mischo A, Bubel N, Cebon JS, Samaras P, Petrausch U, Stenner-Liewen F, Schaefer NG, Kubuschok B, Renner C, Wadle A (2011) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad antibody responses in humans, a RAYS-based analysis. Int J Oncol 39(1):287–294PubMed
11.
go back to reference Sang M, Lian Y, Zhou X, Shan B (2011) MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 29(47):8496–8500PubMedCrossRef Sang M, Lian Y, Zhou X, Shan B (2011) MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 29(47):8496–8500PubMedCrossRef
12.
go back to reference Zandvliet ML, van Liempt E, Jedema I, Veltrop-Duits LA, Willemze R, Guchelaar HJ, Falkenburg JH, Meij P (2010) Co-ordinated isolation of CD8(+) and CD4(+) T cells recognizing a broad repertoire of cytomegalovirus pp 65 and IE1 epitopes for highly specific adoptive immunotherapy. Cytotherapy 12(7):933–944PubMedCrossRef Zandvliet ML, van Liempt E, Jedema I, Veltrop-Duits LA, Willemze R, Guchelaar HJ, Falkenburg JH, Meij P (2010) Co-ordinated isolation of CD8(+) and CD4(+) T cells recognizing a broad repertoire of cytomegalovirus pp 65 and IE1 epitopes for highly specific adoptive immunotherapy. Cytotherapy 12(7):933–944PubMedCrossRef
13.
go back to reference Zhang H, Hong H, Li D, Ma S, Di Y, Stoten A, Di Haig N, Gleria K, Yu Z, Xu XN, McMichael A, Jiang S (2009) Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8 + and CD4 + T cells. J Biol Chem 284(14):9184–9191PubMedCrossRef Zhang H, Hong H, Li D, Ma S, Di Y, Stoten A, Di Haig N, Gleria K, Yu Z, Xu XN, McMichael A, Jiang S (2009) Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8 + and CD4 + T cells. J Biol Chem 284(14):9184–9191PubMedCrossRef
14.
go back to reference Newman KD, Samuel J, Kwon G (1998) Ovalbumin peptide encapsulated in poly(d, l lactic-co-glycolic acid) microspheres is capable of inducing a T helper type 1 immune response. J Control Release 54(1):49–59PubMedCrossRef Newman KD, Samuel J, Kwon G (1998) Ovalbumin peptide encapsulated in poly(d, l lactic-co-glycolic acid) microspheres is capable of inducing a T helper type 1 immune response. J Control Release 54(1):49–59PubMedCrossRef
15.
go back to reference Waeckerle-Men Y, Gander B, Groettrup M (2005) Delivery of tumor antigens to dendritic cells using biodegradable microspheres. Methods Mol Med 109:35–46PubMed Waeckerle-Men Y, Gander B, Groettrup M (2005) Delivery of tumor antigens to dendritic cells using biodegradable microspheres. Methods Mol Med 109:35–46PubMed
16.
go back to reference Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678PubMedCrossRef Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678PubMedCrossRef
17.
go back to reference Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464CrossRef Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464CrossRef
18.
go back to reference Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55CrossRef Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55CrossRef
19.
go back to reference Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carr Syst 28(1):1–45CrossRef Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carr Syst 28(1):1–45CrossRef
20.
go back to reference Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10–11):943–955PubMedCrossRef Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10–11):943–955PubMedCrossRef
21.
go back to reference Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88PubMedCrossRef Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88PubMedCrossRef
22.
go back to reference Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26(13):1626–1637PubMedCrossRef Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26(13):1626–1637PubMedCrossRef
23.
go back to reference Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021PubMedCrossRef Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021PubMedCrossRef
24.
go back to reference Yoshida M, Mata J, Babensee JE (2007) Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J Biomed Mater Res A 80(1):7–12PubMed Yoshida M, Mata J, Babensee JE (2007) Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J Biomed Mater Res A 80(1):7–12PubMed
25.
go back to reference Han H, Peng JR, Chen PC, Gong L, Qiao SS, Wang WZ, Cui ZQ, Yu X, Wei YH, Leng XS (2011) A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro. Biochem Biophys Res Commun 411(3):530–535PubMedCrossRef Han H, Peng JR, Chen PC, Gong L, Qiao SS, Wang WZ, Cui ZQ, Yu X, Wei YH, Leng XS (2011) A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro. Biochem Biophys Res Commun 411(3):530–535PubMedCrossRef
26.
go back to reference Steenblock ER, Fahmy TM (2008) A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther 16(4):765–772PubMedCrossRef Steenblock ER, Fahmy TM (2008) A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther 16(4):765–772PubMedCrossRef
27.
go back to reference Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277PubMedCrossRef Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277PubMedCrossRef
28.
go back to reference Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22PubMedCrossRef Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22PubMedCrossRef
29.
go back to reference Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240PubMedCrossRef Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240PubMedCrossRef
30.
go back to reference Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281PubMedCrossRef Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281PubMedCrossRef
31.
go back to reference Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, Davoust J, Ricciardi-Castagnoli P (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185(2):317–328PubMedCrossRef Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, Davoust J, Ricciardi-Castagnoli P (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185(2):317–328PubMedCrossRef
32.
go back to reference Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJ, Verbeek JS, Ossendorp F (2002) Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8 + CTL responses in vivo. J Immunol 168(5):2240–2246PubMed Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJ, Verbeek JS, Ossendorp F (2002) Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8 + CTL responses in vivo. J Immunol 168(5):2240–2246PubMed
33.
go back to reference Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6(3):369–376PubMedCrossRef Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6(3):369–376PubMedCrossRef
34.
go back to reference Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785PubMedCrossRef Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785PubMedCrossRef
35.
go back to reference Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, Bouwstra J, Broere F, Jiskoot W (2010) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28(38):6282–6291PubMedCrossRef Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, Bouwstra J, Broere F, Jiskoot W (2010) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28(38):6282–6291PubMedCrossRef
36.
go back to reference Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A (2011) Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res 28(9):2288–2301PubMedCrossRef Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A (2011) Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res 28(9):2288–2301PubMedCrossRef
37.
go back to reference Mueller M, Schlosser E, Gander B, Groettrup M (2011) Tumor eradication by immunotherapy with biodegradable PLGA microspheres—an alternative to incomplete Freund’s adjuvant. Int J Cancer 129(2):407–416PubMedCrossRef Mueller M, Schlosser E, Gander B, Groettrup M (2011) Tumor eradication by immunotherapy with biodegradable PLGA microspheres—an alternative to incomplete Freund’s adjuvant. Int J Cancer 129(2):407–416PubMedCrossRef
38.
go back to reference Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844CrossRef Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844CrossRef
39.
go back to reference Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP (2011) Determinants of successful CD8 + T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17(16):5343–5352PubMedCrossRef Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP (2011) Determinants of successful CD8 + T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17(16):5343–5352PubMedCrossRef
40.
go back to reference Montagna D, Turin I, Schiavo R, Montini E, Zaffaroni N, Villa R, Secondino S, Schiavetto I, Caliogna L, Locatelli F, Libri V, Pession A, Tonelli R, Maccario R, Siena S, Pedrazzoli P (2012) Feasibility and safety of adoptive immunotherapy with ex vivo-generated autologous, cytotoxic T lymphocytes in patients with solid tumor. Cytotherapy. 14(1):80–90PubMedCrossRef Montagna D, Turin I, Schiavo R, Montini E, Zaffaroni N, Villa R, Secondino S, Schiavetto I, Caliogna L, Locatelli F, Libri V, Pession A, Tonelli R, Maccario R, Siena S, Pedrazzoli P (2012) Feasibility and safety of adoptive immunotherapy with ex vivo-generated autologous, cytotoxic T lymphocytes in patients with solid tumor. Cytotherapy. 14(1):80–90PubMedCrossRef
41.
go back to reference Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190PubMed Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190PubMed
42.
go back to reference Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3):320–326PubMedCrossRef Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3):320–326PubMedCrossRef
43.
go back to reference Denoeud J, Moser M (2011) Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 89(2):195–203PubMedCrossRef Denoeud J, Moser M (2011) Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 89(2):195–203PubMedCrossRef
44.
go back to reference Gerdes N, Zirlik A (2011) Co-stimulatory molecules in and beyond co-stimulation—tipping the balance in atherosclerosis? Thromb Haemost 106(5):804–813PubMedCrossRef Gerdes N, Zirlik A (2011) Co-stimulatory molecules in and beyond co-stimulation—tipping the balance in atherosclerosis? Thromb Haemost 106(5):804–813PubMedCrossRef
45.
go back to reference Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER (2012) T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol 189(7):3311–3318PubMedCrossRef Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER (2012) T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol 189(7):3311–3318PubMedCrossRef
46.
go back to reference Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146PubMedCrossRef Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146PubMedCrossRef
47.
go back to reference Turtle CJ, Riddell SR (2010) Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J 16(4):374–381PubMedCrossRef Turtle CJ, Riddell SR (2010) Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J 16(4):374–381PubMedCrossRef
48.
go back to reference Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393PubMedCrossRef Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393PubMedCrossRef
49.
go back to reference Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342PubMedCrossRef Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342PubMedCrossRef
50.
go back to reference Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8 + T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310(1–2):40–52PubMedCrossRef Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8 + T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310(1–2):40–52PubMedCrossRef
51.
go back to reference Le HK, Graham L, Miller CH, Kmieciak M, Manjili MH, Bear HD (2009) Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1 + ionomycin in IL-7 + IL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2. Cancer Immunol Immunother 58(10):1565–1576PubMedCrossRef Le HK, Graham L, Miller CH, Kmieciak M, Manjili MH, Bear HD (2009) Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1 + ionomycin in IL-7 + IL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2. Cancer Immunol Immunother 58(10):1565–1576PubMedCrossRef
53.
go back to reference Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81PubMedCrossRef Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81PubMedCrossRef
54.
go back to reference Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW (2004) Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 172(3):1380–1390PubMed Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW (2004) Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 172(3):1380–1390PubMed
55.
go back to reference Garcia-Hernandez MdeL, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW (2010) Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol 184(8):4215–4227CrossRef Garcia-Hernandez MdeL, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW (2010) Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol 184(8):4215–4227CrossRef
56.
go back to reference Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8 + T cells for adoptive immunotherapy. Blood 111(11):5326–5333PubMedCrossRef Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8 + T cells for adoptive immunotherapy. Blood 111(11):5326–5333PubMedCrossRef
57.
go back to reference Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601PubMedCrossRef Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601PubMedCrossRef
58.
go back to reference de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, Piersma SJ, Kenter GG, van der Burg SH (2010) An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res 70(7):2707–2717CrossRef de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, Piersma SJ, Kenter GG, van der Burg SH (2010) An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res 70(7):2707–2717CrossRef
59.
go back to reference Piersma SJ, Welters MJ, van der Hulst JM, Kloth JN, Kwappenberg KM, Trimbos BJ, Melief CJ, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH (2008) Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer 122(3):486–494PubMedCrossRef Piersma SJ, Welters MJ, van der Hulst JM, Kloth JN, Kwappenberg KM, Trimbos BJ, Melief CJ, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH (2008) Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer 122(3):486–494PubMedCrossRef
60.
go back to reference Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 + T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703PubMedCrossRef Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 + T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703PubMedCrossRef
61.
go back to reference Prior S, Gander B, Blarer N, Merkle HP, Subira ML, Irache JM, Gamazo C (2002) In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. Eur J Pharm Sci 15(2):197–207PubMedCrossRef Prior S, Gander B, Blarer N, Merkle HP, Subira ML, Irache JM, Gamazo C (2002) In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. Eur J Pharm Sci 15(2):197–207PubMedCrossRef
62.
go back to reference Yoshida M, Babensee JE (2006) Differential effects of agarose and poly(lactic-co-glycolic acid) on dendritic cell maturation. J Biomed Mater Res A 79(2):393–408PubMed Yoshida M, Babensee JE (2006) Differential effects of agarose and poly(lactic-co-glycolic acid) on dendritic cell maturation. J Biomed Mater Res A 79(2):393–408PubMed
63.
go back to reference Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151(3):278–285PubMedCrossRef Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151(3):278–285PubMedCrossRef
64.
go back to reference van Montfoort N, Camps MG, Khan S, Filippov DV, Weterings JJ, Griffith JM, Geuze HJ, van Hall T, Verbeek JS, Melief CJ, Ossendorp F (2009) Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proc Natl Acad Sci USA 106(16):6730–6735PubMedCrossRef van Montfoort N, Camps MG, Khan S, Filippov DV, Weterings JJ, Griffith JM, Geuze HJ, van Hall T, Verbeek JS, Melief CJ, Ossendorp F (2009) Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proc Natl Acad Sci USA 106(16):6730–6735PubMedCrossRef
65.
go back to reference Coulie PG, Connerotte T (2005) Human tumor-specific T lymphocytes: does function matter more than number? Curr Opin Immunol 17(3):320–325PubMedCrossRef Coulie PG, Connerotte T (2005) Human tumor-specific T lymphocytes: does function matter more than number? Curr Opin Immunol 17(3):320–325PubMedCrossRef
66.
go back to reference Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899 Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899
67.
go back to reference Bos R, Sherman LA (2010) CD4 + T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8 + T lymphocytes. Cancer Res 70(21):8368–8377PubMedCrossRef Bos R, Sherman LA (2010) CD4 + T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8 + T lymphocytes. Cancer Res 70(21):8368–8377PubMedCrossRef
Metadata
Title
Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles
Authors
Rodney A. Rosalia
Ana Luisa Silva
Marcel Camps
Ahmed Allam
Wim Jiskoot
Sjoerd H. van der Burg
Ferry Ossendorp
Jaap Oostendorp
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 7/2013
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-013-1411-0

Other articles of this Issue 7/2013

Cancer Immunology, Immunotherapy 7/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine