Skip to main content
Top
Published in: Acta Diabetologica 6/2016

01-12-2016 | Original Article

Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy

Authors: Elena Beltramo, Tatiana Lopatina, Aurora Mazzeo, Ana I. Arroba, Angela M. Valverde, Cristina Hernández, Rafael Simó, Massimo Porta

Published in: Acta Diabetologica | Issue 6/2016

Login to get access

Abstract

Aims

Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α2-adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood–retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina.

Methods

Expression of SST receptors 1–5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed.

Results

HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina–vascular crosstalk under diabetic-like conditions.

Conclusions

Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.
Literature
1.
go back to reference Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23CrossRefPubMed Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23CrossRefPubMed
2.
go back to reference Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523CrossRefPubMed Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523CrossRefPubMed
3.
go back to reference Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290CrossRefPubMed Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290CrossRefPubMed
4.
go back to reference Antonetti DA, Barber AJ, Bronson SK et al (2006) JDRF Diabetic retinopathy center group. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411CrossRefPubMed Antonetti DA, Barber AJ, Bronson SK et al (2006) JDRF Diabetic retinopathy center group. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411CrossRefPubMed
5.
go back to reference Hernández C, García-Ramírez M, Corraliza L, Fernández-Carneado J, Farrera-Sinfreu Ponsati B, González-Rodríguez A, Valverde AM, Simó R (2013) Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes. Diabetes 62:2569–2578CrossRefPubMedPubMedCentral Hernández C, García-Ramírez M, Corraliza L, Fernández-Carneado J, Farrera-Sinfreu Ponsati B, González-Rodríguez A, Valverde AM, Simó R (2013) Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes. Diabetes 62:2569–2578CrossRefPubMedPubMedCentral
6.
go back to reference Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R (2007) Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30:2902–2908CrossRefPubMed Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R (2007) Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30:2902–2908CrossRefPubMed
7.
go back to reference Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 1018:66–72CrossRefPubMed Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 1018:66–72CrossRefPubMed
8.
go back to reference Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM (2009) Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 58:1382–1390CrossRefPubMedPubMedCentral Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM (2009) Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 58:1382–1390CrossRefPubMedPubMedCentral
9.
go back to reference Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30CrossRef Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30CrossRef
10.
go back to reference Berner AK, Brouwers O, Pringle R et al (2012) Protection against methylglyoxal derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55:845–854CrossRefPubMed Berner AK, Brouwers O, Pringle R et al (2012) Protection against methylglyoxal derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55:845–854CrossRefPubMed
11.
go back to reference Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2008) AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia 56:1076–1090CrossRefPubMed Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2008) AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia 56:1076–1090CrossRefPubMed
13.
go back to reference Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598CrossRefPubMed Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598CrossRefPubMed
14.
go back to reference Hernández C, Carrasco E, Casamitjana R, Deulofeu R, García-Arumí J, Simó R (2005) Somatostatin molecular variants in the vitreous fluid: a comparative study between diabetic patients with proliferative diabetic retinopathy and nondiabetic control subjects. Diabetes Care 28:1941–1947CrossRefPubMed Hernández C, Carrasco E, Casamitjana R, Deulofeu R, García-Arumí J, Simó R (2005) Somatostatin molecular variants in the vitreous fluid: a comparative study between diabetic patients with proliferative diabetic retinopathy and nondiabetic control subjects. Diabetes Care 28:1941–1947CrossRefPubMed
15.
go back to reference Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefPubMed Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefPubMed
16.
go back to reference Cervia D, Casini G, Bagnoli P (2008) Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol Cell Endocrinol 286:112–122CrossRefPubMed Cervia D, Casini G, Bagnoli P (2008) Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol Cell Endocrinol 286:112–122CrossRefPubMed
17.
go back to reference Kiagiadaki F, Savvaki M, Thermos K (2010) Activation of somatostatin receptor (SST 5) protects the rat retina from AMPA-induced neurotoxicity. Neuropharmacology 58:297–303CrossRefPubMed Kiagiadaki F, Savvaki M, Thermos K (2010) Activation of somatostatin receptor (SST 5) protects the rat retina from AMPA-induced neurotoxicity. Neuropharmacology 58:297–303CrossRefPubMed
18.
go back to reference Baptiste DC, Hartwick AT, Jollimore CA et al (2002) Comparison of the neuroprotective effects of adrenoceptor drugs in retinal cell culture and intact retina. Invest Ophthalmol Vis Sci 43:2666–2676PubMed Baptiste DC, Hartwick AT, Jollimore CA et al (2002) Comparison of the neuroprotective effects of adrenoceptor drugs in retinal cell culture and intact retina. Invest Ophthalmol Vis Sci 43:2666–2676PubMed
19.
go back to reference Mayor-Torroglosa S, De la Villa P, Rodríguez ME et al (2005) Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: neuroprotection with brimonidine. Invest Ophthalmol Vis Sci 46:3825–3835CrossRefPubMed Mayor-Torroglosa S, De la Villa P, Rodríguez ME et al (2005) Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: neuroprotection with brimonidine. Invest Ophthalmol Vis Sci 46:3825–3835CrossRefPubMed
20.
go back to reference Kusari J, Zhou SX, Padillo E, Clarke KG, Gil DW (2010) Inhibition of vitreoretinal VEGF elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine. Invest Ophthalmol Vis Sci 51:1044–1051. doi:10.1167/iovs.08-3293 CrossRefPubMed Kusari J, Zhou SX, Padillo E, Clarke KG, Gil DW (2010) Inhibition of vitreoretinal VEGF elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine. Invest Ophthalmol Vis Sci 51:1044–1051. doi:10.​1167/​iovs.​08-3293 CrossRefPubMed
21.
go back to reference Beltramo E, Berrone E, Tarallo S, Porta M (2009) Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine. Diabetes Metab Res Rev 25:566–576. doi:10.1002/dmrr.996 CrossRefPubMed Beltramo E, Berrone E, Tarallo S, Porta M (2009) Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine. Diabetes Metab Res Rev 25:566–576. doi:10.​1002/​dmrr.​996 CrossRefPubMed
22.
go back to reference van Hagen PM, Baarsma GS, Mooy CM, Ercoskan EM, ter Averst E, Hofland LJ, Lamberts SW, Kuijpers RW (2000) Somatostatin and somatostatin receptors in retinal diseases. Eur J Endocrinol 143(Suppl 1):S43–S51CrossRefPubMed van Hagen PM, Baarsma GS, Mooy CM, Ercoskan EM, ter Averst E, Hofland LJ, Lamberts SW, Kuijpers RW (2000) Somatostatin and somatostatin receptors in retinal diseases. Eur J Endocrinol 143(Suppl 1):S43–S51CrossRefPubMed
23.
go back to reference Klisovic DD, O’Dorisio MS, Katz SE, Sall JW, Balster D, O’Dorisio TM, Craig E, Lubow M (2001) Somatostatin receptor gene expression in human ocular tissues: RT-PCR and immunohistochemical study. Invest Ophthalmol Vis Sci 42:2193–2201PubMed Klisovic DD, O’Dorisio MS, Katz SE, Sall JW, Balster D, O’Dorisio TM, Craig E, Lubow M (2001) Somatostatin receptor gene expression in human ocular tissues: RT-PCR and immunohistochemical study. Invest Ophthalmol Vis Sci 42:2193–2201PubMed
24.
go back to reference Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer 92:1493–1498CrossRefPubMedPubMedCentral Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer 92:1493–1498CrossRefPubMedPubMedCentral
25.
go back to reference Beltramo E, Nizheradze K, Berrone E, Tarallo S, Porta M (2009) Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev 25:647–656. doi:10.1002/dmrr.1008 CrossRefPubMed Beltramo E, Nizheradze K, Berrone E, Tarallo S, Porta M (2009) Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev 25:647–656. doi:10.​1002/​dmrr.​1008 CrossRefPubMed
26.
go back to reference Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33CrossRefPubMed Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33CrossRefPubMed
27.
go back to reference Thermos K, Bagnoli P, Epelbaum J, Hoyer D (2006) The somatostatin sst1 receptor: an autoreceptor for somatostatin in brain and retina? Pharmacol Ther 110:455–464CrossRefPubMed Thermos K, Bagnoli P, Epelbaum J, Hoyer D (2006) The somatostatin sst1 receptor: an autoreceptor for somatostatin in brain and retina? Pharmacol Ther 110:455–464CrossRefPubMed
28.
go back to reference Casini G, Dal Monte M, Petrucci C, Gambellini G, Grouselle D, Allen JP, Kreienkamp HJ, Richter D, Epelbaum J, Bagnoli P (2004) Altered morphology of rod bipolar cell axonal terminals in the retinas of mice carrying genetic deletion of somatostatin subtype receptor 1 or 2. Eur J Neurosci 19:43–54CrossRefPubMed Casini G, Dal Monte M, Petrucci C, Gambellini G, Grouselle D, Allen JP, Kreienkamp HJ, Richter D, Epelbaum J, Bagnoli P (2004) Altered morphology of rod bipolar cell axonal terminals in the retinas of mice carrying genetic deletion of somatostatin subtype receptor 1 or 2. Eur J Neurosci 19:43–54CrossRefPubMed
29.
30.
go back to reference Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225CrossRefPubMed Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225CrossRefPubMed
31.
go back to reference Aplin AC, Nicosia RF (2016) Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor. Angiogenesis 19:133–146. doi:10.1007/s10456-015-9493-2 CrossRefPubMed Aplin AC, Nicosia RF (2016) Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor. Angiogenesis 19:133–146. doi:10.​1007/​s10456-015-9493-2 CrossRefPubMed
32.
go back to reference Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845CrossRefPubMed Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845CrossRefPubMed
33.
go back to reference Ferjoux G, Bousquet C, Cordelier P, Benali N, Lopez F, Rochaix P, Buscail L, Susini C (2000) Signal transduction of somatostatin receptors negatively controlling cell proliferation. J Physiol Paris 94:205–210CrossRefPubMed Ferjoux G, Bousquet C, Cordelier P, Benali N, Lopez F, Rochaix P, Buscail L, Susini C (2000) Signal transduction of somatostatin receptors negatively controlling cell proliferation. J Physiol Paris 94:205–210CrossRefPubMed
34.
go back to reference Duran-Prado M, Morell M, Delgado-Maroto V, Castaño JP, Aneiros-Fernandez J, de Lecea L, Culler MD, Hernandez-Cortes P, O’Valle F, Delgado M (2013) Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res 112:1444–1455CrossRefPubMed Duran-Prado M, Morell M, Delgado-Maroto V, Castaño JP, Aneiros-Fernandez J, de Lecea L, Culler MD, Hernandez-Cortes P, O’Valle F, Delgado M (2013) Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res 112:1444–1455CrossRefPubMed
36.
go back to reference Sharma K, Srikant CB (1998) Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer 76:259–266CrossRefPubMed Sharma K, Srikant CB (1998) Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer 76:259–266CrossRefPubMed
37.
go back to reference Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol 49(Suppl 1):S141–S151. doi:10.1007/s00592-012-0390-5 CrossRefPubMed Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol 49(Suppl 1):S141–S151. doi:10.​1007/​s00592-012-0390-5 CrossRefPubMed
38.
go back to reference Beltramo E, Lopatina T, Berrone E, Mazzeo A, Iavello A, Camussi G, Porta M (2014) Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro. Acta Diabetol 51:1055–1064. doi:10.1007/s00592-014-0672-1 CrossRefPubMed Beltramo E, Lopatina T, Berrone E, Mazzeo A, Iavello A, Camussi G, Porta M (2014) Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro. Acta Diabetol 51:1055–1064. doi:10.​1007/​s00592-014-0672-1 CrossRefPubMed
39.
40.
go back to reference Elfont RM, Sundaresan PR, Sladek CD (1989) Adrenergic receptors on cerebral microvessels: pericyte contribution. Am J Physiol 256(1 Pt 2):R224–R230PubMed Elfont RM, Sundaresan PR, Sladek CD (1989) Adrenergic receptors on cerebral microvessels: pericyte contribution. Am J Physiol 256(1 Pt 2):R224–R230PubMed
41.
go back to reference Ferrari-Dileo G, Davis EB, Anderson DR (1992) Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci 33:42–47PubMed Ferrari-Dileo G, Davis EB, Anderson DR (1992) Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci 33:42–47PubMed
43.
go back to reference Wanek J, Blair NP, Chau FY, Lim JI, Leiderman YI, Shahidi M (2016) Alterations in retinal layer thickness and reflectance at different stages of diabetic retinopathy by en face optical coherence tomography. Invest Ophthalmol Vis Sci 57:341–347. doi:10.1167/iovs.15-18715 CrossRef Wanek J, Blair NP, Chau FY, Lim JI, Leiderman YI, Shahidi M (2016) Alterations in retinal layer thickness and reflectance at different stages of diabetic retinopathy by en face optical coherence tomography. Invest Ophthalmol Vis Sci 57:341–347. doi:10.​1167/​iovs.​15-18715 CrossRef
44.
go back to reference Mollick T, Mohlin C, Johansson K (2016) Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res. doi:10.1016/j.brainres.2016.06.039 [Epub ahead of print] PubMed Mollick T, Mohlin C, Johansson K (2016) Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res. doi:10.​1016/​j.​brainres.​2016.​06.​039 [Epub ahead of print] PubMed
Metadata
Title
Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy
Authors
Elena Beltramo
Tatiana Lopatina
Aurora Mazzeo
Ana I. Arroba
Angela M. Valverde
Cristina Hernández
Rafael Simó
Massimo Porta
Publication date
01-12-2016
Publisher
Springer Milan
Published in
Acta Diabetologica / Issue 6/2016
Print ISSN: 0940-5429
Electronic ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-016-0895-4

Other articles of this Issue 6/2016

Acta Diabetologica 6/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.