Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 2/2012

01-02-2012 | Experimental Study

Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants

Authors: M. Petri, K. Ufer, I. Toma, C. Becher, E. Liodakis, S. Brand, P. Haas, C. Liu, B. Richter, C. Haasper, G. von Lewinski, M. Jagodzinski

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 2/2012

Login to get access

Abstract

Purpose

The purpose of this study was to investigate the influence of continuous perfusion and mechanical stimulation on bone marrow stromal cells seeded on a collagen meniscus implant.

Methods

Bone marrow aspirates from 6 donors were amplified in vitro. 106 human BMSC were distributed on a collagen meniscus implant. Scaffolds were cultured under static conditions (control) or placed into a bioreactor system where continuous perfusion (10 ml/min) or perfusion and mechanical stimulation (8 h of 10% cyclic compression at 0.5 Hz) were administered daily. After 24 h, 7 and 14 days, cell proliferation, synthesis of procollagen I and III peptide (PIP, PIIIP), histology, and the equilibrium modulus of the constructs were analyzed.

Results

Proliferation demonstrated a significant increase over time in all groups (p < 0.001). PIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.0 ± 0.5 (perfusion), 3.8 ± 0.3 (mechanical stimulation), and 1.8 ± 0.2 U/ml/g protein (static control, lower than perfusion and mechanical stimulation, p < 0.05). These differences were also evident after 2 weeks (2.7 ± 0.3, 4.0 ± 0.6, and 1.8 ± 0.2 U/ml/g protein, p < 0.01); PIIIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.9 ± 0.7 (perfusion), 3.1 ± 0.9 (mechanical stimulation), and 1.6 ± 0.3 U/ml/g protein (controls) after 1 week and remained significantly elevated under the influence of perfusion and mechanical stimulation (p < 0.01) after 2 weeks. Mechanical stimulation increased the equilibrium modulus more than static culture and perfusion after 2 weeks (24.7 ± 7.6; 12.3 ± 3.7; 15.4 ± 2.6 kPa; p < 0.02).

Conclusion

Biomechanical stimulation and perfusion have impact on collagen scaffolds seeded with BMSCs. Cell proliferation can be enhanced using continuous perfusion and differentiation is fostered by mechanical stimulation.

Level of evidence

Non-applicable experimental study.
Literature
1.
go back to reference Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85(2):445–455PubMed Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85(2):445–455PubMed
2.
go back to reference Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3):451–457PubMedCrossRef Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3):451–457PubMedCrossRef
3.
go back to reference Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res 367:S244–S253PubMedCrossRef Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res 367:S244–S253PubMedCrossRef
4.
go back to reference Aufderheide AC, Athanasiou KA (2004) Mechanical stimulation toward tissue engineering of the knee meniscus. Ann Biomed Eng 32(8):1161–1174PubMedCrossRef Aufderheide AC, Athanasiou KA (2004) Mechanical stimulation toward tissue engineering of the knee meniscus. Ann Biomed Eng 32(8):1161–1174PubMedCrossRef
5.
go back to reference Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70(1):7–14PubMed Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70(1):7–14PubMed
6.
go back to reference Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977PubMedCrossRef Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977PubMedCrossRef
7.
go back to reference Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14(7):1195–1202PubMedCrossRef Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14(7):1195–1202PubMedCrossRef
8.
go back to reference Ballyns JJ, Wright TM, Bonassar LJ (2010) Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials 31(26):6756–6763PubMedCrossRef Ballyns JJ, Wright TM, Bonassar LJ (2010) Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials 31(26):6756–6763PubMedCrossRef
9.
go back to reference Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27(5):636–643PubMed Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27(5):636–643PubMed
10.
go back to reference Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25(9):1523–1532PubMedCrossRef Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25(9):1523–1532PubMedCrossRef
11.
go back to reference Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthr Cartil 3(2):127–138PubMedCrossRef Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthr Cartil 3(2):127–138PubMedCrossRef
12.
go back to reference Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31(9):1114–1124PubMedCrossRef Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31(9):1114–1124PubMedCrossRef
13.
go back to reference de Groot JH, de Vrijer R, Pennings AJ, Klompmaker J, Veth RP, Jansen HW (1996) Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 17(2):163–173PubMedCrossRef de Groot JH, de Vrijer R, Pennings AJ, Klompmaker J, Veth RP, Jansen HW (1996) Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 17(2):163–173PubMedCrossRef
14.
go back to reference Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR (1995) The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am J Sports Med 23(6):721–728PubMedCrossRef Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR (1995) The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am J Sports Med 23(6):721–728PubMedCrossRef
15.
go back to reference Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30B(4):664–670PubMed Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30B(4):664–670PubMed
16.
go back to reference Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S (2006) Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol 290(6):C1610–C1615PubMedCrossRef Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S (2006) Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol 290(6):C1610–C1615PubMedCrossRef
17.
go back to reference Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ (2007) Boundary mode frictional properties of engineered cartilaginous tissues. Eur Cell Mater 14:20–28 discussion 28-29PubMed Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ (2007) Boundary mode frictional properties of engineered cartilaginous tissues. Eur Cell Mater 14:20–28 discussion 28-29PubMed
18.
go back to reference Gonzalez-Lucena G, Gelber PE, Pelfort X, Tey M, Monllau JC (2010) Meniscal allograft transplantation without bone blocks: a 5–8 year follow-up of 33 patients. Arthroscopy 26(12):1633–1640PubMedCrossRef Gonzalez-Lucena G, Gelber PE, Pelfort X, Tey M, Monllau JC (2010) Meniscal allograft transplantation without bone blocks: a 5–8 year follow-up of 33 patients. Arthroscopy 26(12):1633–1640PubMedCrossRef
19.
go back to reference Haasper C, Colditz M, Budde S, Hesse E, Tschernig T, Frink M, Krettek C, Hurschler C, Jagodzinski M (2009) Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts. Knee Surg Sports Traumatol Arthrosc 17(11):1384–1392PubMedCrossRef Haasper C, Colditz M, Budde S, Hesse E, Tschernig T, Frink M, Krettek C, Hurschler C, Jagodzinski M (2009) Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts. Knee Surg Sports Traumatol Arthrosc 17(11):1384–1392PubMedCrossRef
20.
go back to reference Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49PubMedCrossRef Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49PubMedCrossRef
21.
go back to reference Ibarra C, Koski JA, Warren RF (2000) Tissue engineering meniscus: cells and matrix. Orthop Clin North Am 31(3):411–418PubMedCrossRef Ibarra C, Koski JA, Warren RF (2000) Tissue engineering meniscus: cells and matrix. Orthop Clin North Am 31(3):411–418PubMedCrossRef
22.
go back to reference Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr Cartil 12(9):736–744PubMedCrossRef Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr Cartil 12(9):736–744PubMedCrossRef
23.
go back to reference Jagodzinski M, Breitbart A, Wehmeier M, Hesse E, Haasper C, Krettek C, Zeichen J, Hankemeier S (2008) Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech 41(9):1885–1891PubMedCrossRef Jagodzinski M, Breitbart A, Wehmeier M, Hesse E, Haasper C, Krettek C, Zeichen J, Hankemeier S (2008) Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech 41(9):1885–1891PubMedCrossRef
24.
go back to reference Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, van Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41 discussion 41PubMed Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, van Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41 discussion 41PubMed
25.
go back to reference Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33(1):45–51PubMedCrossRef Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33(1):45–51PubMedCrossRef
26.
go back to reference Le Roux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124(3):315–321CrossRef Le Roux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124(3):315–321CrossRef
27.
go back to reference Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I (2006) Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 27(35):5927–5934PubMedCrossRef Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I (2006) Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 27(35):5927–5934PubMedCrossRef
28.
go back to reference Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234PubMedCrossRef Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234PubMedCrossRef
29.
go back to reference Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M (1999) Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 20(8):701–709PubMedCrossRef Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M (1999) Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 20(8):701–709PubMedCrossRef
30.
go back to reference Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 391:S208–S218PubMedCrossRef Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 391:S208–S218PubMedCrossRef
31.
go back to reference Peretti GM, Caruso EM, Randolph MA, Zaleske DJ (2001) Meniscal repair using engineered tissue. J Orthop Res 19(2):278–285PubMedCrossRef Peretti GM, Caruso EM, Randolph MA, Zaleske DJ (2001) Meniscal repair using engineered tissue. J Orthop Res 19(2):278–285PubMedCrossRef
32.
go back to reference Rodkey WG, De Haven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426PubMedCrossRef Rodkey WG, De Haven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426PubMedCrossRef
33.
go back to reference Samuelsson H, Ringden O, Lonnies H, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11(2):129–136PubMedCrossRef Samuelsson H, Ringden O, Lonnies H, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11(2):129–136PubMedCrossRef
34.
go back to reference Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F (2003) Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308–313PubMed Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F (2003) Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308–313PubMed
35.
go back to reference Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79(13):8014–8023PubMedCrossRef Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79(13):8014–8023PubMedCrossRef
36.
go back to reference Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25(9):1027–1045PubMedCrossRef Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25(9):1027–1045PubMedCrossRef
37.
go back to reference Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM (1995) Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res 13(2):201–207PubMedCrossRef Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM (1995) Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res 13(2):201–207PubMedCrossRef
38.
go back to reference Stapleton TW, Ingram J, Fisher J, Ingham E (2011) Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A 17(1–2):231–242PubMedCrossRef Stapleton TW, Ingram J, Fisher J, Ingham E (2011) Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A 17(1–2):231–242PubMedCrossRef
39.
go back to reference Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359PubMed Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359PubMed
40.
go back to reference Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963–969PubMedCrossRef Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963–969PubMedCrossRef
41.
go back to reference Vailas AC, Zernicke RF, Matsuda J, Curwin S, Durivage J (1986) Adaptation of rat knee meniscus to prolonged exercise. J Appl Physiol 60(3):1031–1034PubMed Vailas AC, Zernicke RF, Matsuda J, Curwin S, Durivage J (1986) Adaptation of rat knee meniscus to prolonged exercise. J Appl Physiol 60(3):1031–1034PubMed
42.
go back to reference Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5(4):327–337PubMedCrossRef Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5(4):327–337PubMedCrossRef
43.
go back to reference Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11):1779–1789PubMedCrossRef Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11):1779–1789PubMedCrossRef
44.
go back to reference Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, Molinari M, Marcacci M (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10 year follow-up study. Am J Sports Med 39(5):977–985PubMedCrossRef Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, Molinari M, Marcacci M (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10 year follow-up study. Am J Sports Med 39(5):977–985PubMedCrossRef
45.
go back to reference Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28(6):888–892PubMed Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28(6):888–892PubMed
Metadata
Title
Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants
Authors
M. Petri
K. Ufer
I. Toma
C. Becher
E. Liodakis
S. Brand
P. Haas
C. Liu
B. Richter
C. Haasper
G. von Lewinski
M. Jagodzinski
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 2/2012
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-011-1600-3

Other articles of this Issue 2/2012

Knee Surgery, Sports Traumatology, Arthroscopy 2/2012 Go to the issue