Skip to main content
Top
Published in: BMC Anesthesiology 1/2013

Open Access 01-12-2013 | Research article

Effects of midazolam, pentobarbital and ketamine on the mRNA expression of ion channels in a model organism Daphnia pulex

Authors: Changhong Dong, Anmin Hu, Yang Ni, Yunxia Zuo, Guo Hua Li

Published in: BMC Anesthesiology | Issue 1/2013

Login to get access

Abstract

Background

Over the last few decades intensive studies have been carried out on the molecular targets mediating general anesthesia as well as the effects of general anesthetics. The γ-aminobutyric acid type A receptor (GABAAR) has been indicated as the primary target of general anaesthetics such as propofol, etomidate and isoflurane, and sedating drugs including benzodiazepines and barbiturates. The GABAAR is also involved in drug tolerance and dependence. However, the involvement of other ion channels is possible.

Methods

Using reverse transcription and quantitative PCR techniques, we systematically investigated changes in the mRNA levels of ion channel genes in response to exposure to midazolam, pentobarbital and ketamine in a freshwater model animal, Daphnia pulex. To retrieve the sequences of Daphnia ion channel genes, Blast searches were performed based on known human or Drosophila ion channel genes. Retrieved sequences were clustered with the maximum-likelihood method. To quantify changes in gene expression after the drug treatments for 4 hours, total RNA was extracted and reverse transcribed into cDNA and then amplified using quantitative PCR.

Results

A total of 108 ion channel transcripts were examined, and 19, 11 and 11 of them are affected by midazolam (100 μM), pentobarbital (200 μM) and ketamine (100 μM), respectively, covering a wide variety of ion channel types. There is some degree of overlap with midazolam- and pentobarbital-induced changes in the mRNA expression profiles, but ketamine causes distinct changes in gene expression pattern.
In addition, flumazenil (10 μM) eliminates the effect of midazolam on the mRNA expression of the GABAA receptor subunit Rdl, suggesting a direct interaction between midazolam and GABAA receptors.

Conclusions

Recent research using high throughput technology suggests that changes in mRNA expression correlate with delayed protein expression. Therefore, the mRNA profile changes in our study may reflect the molecular targets not only in drug actions, but also in chronic drug addiction. Our data also suggest the possibility that hypnotic/anesthetic drugs are capable of altering the functions of the nervous system, as well as those non-nerve tissues with abundant ion channel expressions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller LG, Roy RB, Weill CL: Chronic clonazepam administration decreases gamma-aminobutyric acid A receptor function in cultured cortical neurons. Mol Pharmacol. 1989, 36 (5): 796-802.PubMed Miller LG, Roy RB, Weill CL: Chronic clonazepam administration decreases gamma-aminobutyric acid A receptor function in cultured cortical neurons. Mol Pharmacol. 1989, 36 (5): 796-802.PubMed
2.
go back to reference Loscher W, Rogawski MA: How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012, 53 (Suppl 8): 12-25.CrossRefPubMed Loscher W, Rogawski MA: How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012, 53 (Suppl 8): 12-25.CrossRefPubMed
3.
go back to reference Costa E, Auta J, Grayson DR, Matsumoto K, Pappas GD, Zhang X, Guidotti A: GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs. Neuropharmacology. 2002, 43 (6): 925-937. 10.1016/S0028-3908(02)00199-5.CrossRefPubMed Costa E, Auta J, Grayson DR, Matsumoto K, Pappas GD, Zhang X, Guidotti A: GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs. Neuropharmacology. 2002, 43 (6): 925-937. 10.1016/S0028-3908(02)00199-5.CrossRefPubMed
4.
go back to reference Morgan CJ, Curran HV: Ketamine use: a review. Addiction. 2012, 107 (1): 27-38. 10.1111/j.1360-0443.2011.03576.x.CrossRefPubMed Morgan CJ, Curran HV: Ketamine use: a review. Addiction. 2012, 107 (1): 27-38. 10.1111/j.1360-0443.2011.03576.x.CrossRefPubMed
5.
go back to reference Kelland MD, Soltis RP, Boldry RC, Walters JR: Behavioral and electrophysiological comparison of ketamine with dizocilpine in the rat. Physiol Behav. 1993, 54 (3): 547-554. 10.1016/0031-9384(93)90248-E.CrossRefPubMed Kelland MD, Soltis RP, Boldry RC, Walters JR: Behavioral and electrophysiological comparison of ketamine with dizocilpine in the rat. Physiol Behav. 1993, 54 (3): 547-554. 10.1016/0031-9384(93)90248-E.CrossRefPubMed
6.
go back to reference Irifune M, Katayama S, Takarada T, Shimizu Y, Endo C, Takata T, Morita K, Dohi T, Sato T, Kawahara M: MK-801 enhances gabaculine-induced loss of the righting reflex in mice, but not immobility. Can J Anaesth. 2007, 54 (12): 998-1005. 10.1007/BF03016634.CrossRefPubMed Irifune M, Katayama S, Takarada T, Shimizu Y, Endo C, Takata T, Morita K, Dohi T, Sato T, Kawahara M: MK-801 enhances gabaculine-induced loss of the righting reflex in mice, but not immobility. Can J Anaesth. 2007, 54 (12): 998-1005. 10.1007/BF03016634.CrossRefPubMed
7.
go back to reference Petrenko AB, Yamakura T, Fujiwara N, Askalany AR, Baba H, Sakimura K: Reduced sensitivity to ketamine and pentobarbital in mice lacking the N-methyl-D-aspartate receptor GluRepsilon1 subunit. Anesth Analg. 2004, 99 (4): 1136-1140. 10.1213/01.ANE.0000131729.54986.30. table of contentsCrossRefPubMed Petrenko AB, Yamakura T, Fujiwara N, Askalany AR, Baba H, Sakimura K: Reduced sensitivity to ketamine and pentobarbital in mice lacking the N-methyl-D-aspartate receptor GluRepsilon1 subunit. Anesth Analg. 2004, 99 (4): 1136-1140. 10.1213/01.ANE.0000131729.54986.30. table of contentsCrossRefPubMed
8.
go back to reference Petrenko AB, Yamakura T, Askalany AR, Kohno T, Sakimura K, Baba H: Effects of ketamine on acute somatic nociception in wild-type and N-methyl-D-aspartate (NMDA) receptor epsilon1 subunit knockout mice. Neuropharmacology. 2006, 50 (6): 741-747. 10.1016/j.neuropharm.2005.11.019.CrossRefPubMed Petrenko AB, Yamakura T, Askalany AR, Kohno T, Sakimura K, Baba H: Effects of ketamine on acute somatic nociception in wild-type and N-methyl-D-aspartate (NMDA) receptor epsilon1 subunit knockout mice. Neuropharmacology. 2006, 50 (6): 741-747. 10.1016/j.neuropharm.2005.11.019.CrossRefPubMed
9.
go back to reference Sato Y, Kobayashi E, Murayama T, Mishina M, Seo N: Effect of N-methyl-D-aspartate receptor epsilon1 subunit gene disruption of the action of general anesthetic drugs in mice. Anesthesiology. 2005, 102 (3): 557-561. 10.1097/00000542-200503000-00013.CrossRefPubMed Sato Y, Kobayashi E, Murayama T, Mishina M, Seo N: Effect of N-methyl-D-aspartate receptor epsilon1 subunit gene disruption of the action of general anesthetic drugs in mice. Anesthesiology. 2005, 102 (3): 557-561. 10.1097/00000542-200503000-00013.CrossRefPubMed
10.
go back to reference Hevers W, Hadley SH, Luddens H, Amin J: Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci. 2008, 28 (20): 5383-5393. 10.1523/JNEUROSCI.5443-07.2008.CrossRefPubMed Hevers W, Hadley SH, Luddens H, Amin J: Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci. 2008, 28 (20): 5383-5393. 10.1523/JNEUROSCI.5443-07.2008.CrossRefPubMed
11.
go back to reference Martin WR: XVI. A homeostatic and redundancy theory of tolerance to and dependence on narcotic analgesics. Res Publ Assoc Res Nerv Ment Dis. 1968, 46: 206-225.PubMed Martin WR: XVI. A homeostatic and redundancy theory of tolerance to and dependence on narcotic analgesics. Res Publ Assoc Res Nerv Ment Dis. 1968, 46: 206-225.PubMed
12.
go back to reference Heninger C, Saito N, Tallman JF, Garrett KM, Vitek MP, Duman RS, Gallager DW: Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain. J Mol Neurosci. 1990, 2 (2): 101-107. 10.1007/BF02876917.CrossRefPubMed Heninger C, Saito N, Tallman JF, Garrett KM, Vitek MP, Duman RS, Gallager DW: Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain. J Mol Neurosci. 1990, 2 (2): 101-107. 10.1007/BF02876917.CrossRefPubMed
13.
go back to reference Impagnatiello F, Pesold C, Longone P, Caruncho H, Fritschy JM, Costa E, Guidotti A: Modifications of gamma-aminobutyric acidA receptor subunit expression in rat neocortex during tolerance to diazepam. Mol Pharmacol. 1996, 49 (5): 822-831.PubMed Impagnatiello F, Pesold C, Longone P, Caruncho H, Fritschy JM, Costa E, Guidotti A: Modifications of gamma-aminobutyric acidA receptor subunit expression in rat neocortex during tolerance to diazepam. Mol Pharmacol. 1996, 49 (5): 822-831.PubMed
14.
go back to reference Longone P, Impagnatiello F, Guidotti A, Costa E: Reversible modification of GABAA receptor subunit mRNA expression during tolerance to diazepam-induced cognition dysfunction. Neuropharmacology. 1996, 35 (9–10): 1465-1473.CrossRefPubMed Longone P, Impagnatiello F, Guidotti A, Costa E: Reversible modification of GABAA receptor subunit mRNA expression during tolerance to diazepam-induced cognition dysfunction. Neuropharmacology. 1996, 35 (9–10): 1465-1473.CrossRefPubMed
15.
go back to reference Pesold C, Caruncho HJ, Impagnatiello F, Berg MJ, Fritschy JM, Guidotti A, Costa E: Tolerance to diazepam and changes in GABA(A) receptor subunit expression in rat neocortical areas. Neuroscience. 1997, 79 (2): 477-487. 10.1016/S0306-4522(96)00609-4.CrossRefPubMed Pesold C, Caruncho HJ, Impagnatiello F, Berg MJ, Fritschy JM, Guidotti A, Costa E: Tolerance to diazepam and changes in GABA(A) receptor subunit expression in rat neocortical areas. Neuroscience. 1997, 79 (2): 477-487. 10.1016/S0306-4522(96)00609-4.CrossRefPubMed
16.
go back to reference Chen S, Huang X, Zeng XJ, Sieghart W, Tietz EI: Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA(A) receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience. 1999, 93 (1): 33-44. 10.1016/S0306-4522(99)00118-9.CrossRefPubMed Chen S, Huang X, Zeng XJ, Sieghart W, Tietz EI: Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA(A) receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience. 1999, 93 (1): 33-44. 10.1016/S0306-4522(99)00118-9.CrossRefPubMed
17.
go back to reference Wu Y, Rosenberg HC, Chiu TH, Zhao TJ: Subunit- and brain region-specific reduction of GABAA receptor subunit mRNAs during chronic treatment of rats with diazepam. J Mol Neurosci. 1994, 5 (2): 105-120. 10.1007/BF02736752.CrossRefPubMed Wu Y, Rosenberg HC, Chiu TH, Zhao TJ: Subunit- and brain region-specific reduction of GABAA receptor subunit mRNAs during chronic treatment of rats with diazepam. J Mol Neurosci. 1994, 5 (2): 105-120. 10.1007/BF02736752.CrossRefPubMed
18.
go back to reference Tsuda M, Chiba Y, Suzuki T, Misawa M: Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. Eur J Pharmacol. 1998, 341 (2–3): R1-R2.CrossRefPubMed Tsuda M, Chiba Y, Suzuki T, Misawa M: Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. Eur J Pharmacol. 1998, 341 (2–3): R1-R2.CrossRefPubMed
19.
go back to reference Perez MF, Salmiron R, Ramirez OA: NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to Diazepam. Behav Brain Res. 2003, 144 (1–2): 119-124.CrossRefPubMed Perez MF, Salmiron R, Ramirez OA: NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to Diazepam. Behav Brain Res. 2003, 144 (1–2): 119-124.CrossRefPubMed
20.
go back to reference Almiron RS, Perez MF, Ramirez OA: MK-801 prevents the increased NMDA-NR1 and NR2B subunits mRNA expression observed in the hippocampus of rats tolerant to diazepam. Brain Res. 2004, 1008 (1): 54-60. 10.1016/j.brainres.2004.01.080.CrossRefPubMed Almiron RS, Perez MF, Ramirez OA: MK-801 prevents the increased NMDA-NR1 and NR2B subunits mRNA expression observed in the hippocampus of rats tolerant to diazepam. Brain Res. 2004, 1008 (1): 54-60. 10.1016/j.brainres.2004.01.080.CrossRefPubMed
21.
go back to reference Van Sickle BJ, Cox AS, Schak K, Greenfield LJ, Tietz EI: Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression(1). Neuropharmacology. 2002, 43 (4): 595-606. 10.1016/S0028-3908(02)00152-1.CrossRefPubMed Van Sickle BJ, Cox AS, Schak K, Greenfield LJ, Tietz EI: Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression(1). Neuropharmacology. 2002, 43 (4): 595-606. 10.1016/S0028-3908(02)00152-1.CrossRefPubMed
22.
go back to reference Holt RA, Bateson AN, Martin IL: Chronic treatment with diazepam or abecarnil differently affects the expression of GABAA receptor subunit mRNAs in the rat cortex. Neuropharmacology. 1996, 35 (9–10): 1457-1463.CrossRefPubMed Holt RA, Bateson AN, Martin IL: Chronic treatment with diazepam or abecarnil differently affects the expression of GABAA receptor subunit mRNAs in the rat cortex. Neuropharmacology. 1996, 35 (9–10): 1457-1463.CrossRefPubMed
23.
go back to reference Uusi-Oukari M, Korpi ER: Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev. 2010, 62 (1): 97-135. 10.1124/pr.109.002063.CrossRefPubMed Uusi-Oukari M, Korpi ER: Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev. 2010, 62 (1): 97-135. 10.1124/pr.109.002063.CrossRefPubMed
24.
go back to reference Zhorov BS, Tikhonov DB: Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem. 2004, 88 (4): 782-799. 10.1111/j.1471-4159.2004.02261.x.CrossRefPubMed Zhorov BS, Tikhonov DB: Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem. 2004, 88 (4): 782-799. 10.1111/j.1471-4159.2004.02261.x.CrossRefPubMed
25.
go back to reference Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB: Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009, 136 (1): 149-162. 10.1016/j.cell.2008.12.001.CrossRefPubMedPubMedCentral Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB: Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009, 136 (1): 149-162. 10.1016/j.cell.2008.12.001.CrossRefPubMedPubMedCentral
26.
go back to reference Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R: Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010, 6 (8): e1001064-10.1371/journal.pgen.1001064.CrossRefPubMedPubMedCentral Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R: Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010, 6 (8): e1001064-10.1371/journal.pgen.1001064.CrossRefPubMedPubMedCentral
27.
go back to reference Sheng B, Liu J, Li GH: Metformin preconditioning protects Daphnia pulex from lethal hypoxic insult involving AMPK, HIF and mTOR signaling. Comp Biochem Physiol B Biochem Mol Biol. 2012, 163 (1): 51-58. 10.1016/j.cbpb.2012.04.009.CrossRefPubMed Sheng B, Liu J, Li GH: Metformin preconditioning protects Daphnia pulex from lethal hypoxic insult involving AMPK, HIF and mTOR signaling. Comp Biochem Physiol B Biochem Mol Biol. 2012, 163 (1): 51-58. 10.1016/j.cbpb.2012.04.009.CrossRefPubMed
28.
go back to reference Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.CrossRefPubMedPubMedCentral Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.CrossRefPubMedPubMedCentral
29.
go back to reference Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol. 2000, 132: 365-386. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol. 2000, 132: 365-386.
30.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
31.
go back to reference Lu B, Su Y, Das S, Liu J, Xia J, Ren D: The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell. 2007, 129 (2): 371-383. 10.1016/j.cell.2007.02.041.CrossRefPubMed Lu B, Su Y, Das S, Liu J, Xia J, Ren D: The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell. 2007, 129 (2): 371-383. 10.1016/j.cell.2007.02.041.CrossRefPubMed
32.
go back to reference Myslobodsky MS, Ackermann RF, Golovchinsky V, Engel J: Ketamine-induced rotation: interaction with GABA-transaminase inhibitors and picrotoxin. Pharmacol Biochem Behav. 1979, 11 (5): 483-486. 10.1016/0091-3057(79)90029-7.CrossRefPubMed Myslobodsky MS, Ackermann RF, Golovchinsky V, Engel J: Ketamine-induced rotation: interaction with GABA-transaminase inhibitors and picrotoxin. Pharmacol Biochem Behav. 1979, 11 (5): 483-486. 10.1016/0091-3057(79)90029-7.CrossRefPubMed
33.
go back to reference Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, Horowitz JM, Torres G: A behavioral and molecular analysis of ketamine in zebrafish. Synapse. 2011, 65 (2): 160-167. 10.1002/syn.20830.CrossRefPubMedPubMedCentral Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, Horowitz JM, Torres G: A behavioral and molecular analysis of ketamine in zebrafish. Synapse. 2011, 65 (2): 160-167. 10.1002/syn.20830.CrossRefPubMedPubMedCentral
34.
go back to reference Schafer WR: Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Neuropharmacology. 2004, 47 (Suppl 1): 123-131.CrossRefPubMed Schafer WR: Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Neuropharmacology. 2004, 47 (Suppl 1): 123-131.CrossRefPubMed
35.
go back to reference Kaun KR, Devineni AV, Heberlein U: Drosophila melanogaster as a model to study drug addiction. Hum Genet. 2012, 131 (6): 959-975. 10.1007/s00439-012-1146-6.CrossRefPubMedPubMedCentral Kaun KR, Devineni AV, Heberlein U: Drosophila melanogaster as a model to study drug addiction. Hum Genet. 2012, 131 (6): 959-975. 10.1007/s00439-012-1146-6.CrossRefPubMedPubMedCentral
36.
go back to reference O'Kane CJ: Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci. 2011, 7: 37-60. 10.1007/7854_2010_110.CrossRefPubMed O'Kane CJ: Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci. 2011, 7: 37-60. 10.1007/7854_2010_110.CrossRefPubMed
37.
go back to reference Crevat-Pisano P, Dragna S, Granthil C, Coassolo P, Cano JP, Francois G: Plasma concentrations and pharmacokinetics of midazolam during anaesthesia. J Pharm Pharmacol. 1986, 38 (8): 578-582. 10.1111/j.2042-7158.1986.tb03084.x.CrossRefPubMed Crevat-Pisano P, Dragna S, Granthil C, Coassolo P, Cano JP, Francois G: Plasma concentrations and pharmacokinetics of midazolam during anaesthesia. J Pharm Pharmacol. 1986, 38 (8): 578-582. 10.1111/j.2042-7158.1986.tb03084.x.CrossRefPubMed
38.
go back to reference Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol. 2010, 6: 400-CrossRefPubMedPubMedCentral Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol. 2010, 6: 400-CrossRefPubMedPubMedCentral
39.
go back to reference Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature. 2011, 473 (7347): 337-342. 10.1038/nature10098.CrossRefPubMed Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature. 2011, 473 (7347): 337-342. 10.1038/nature10098.CrossRefPubMed
40.
go back to reference Lackner DH, Schmidt MW, Wu S, Wolf DA, Bahler J: Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol. 2012, 13 (4): R25-10.1186/gb-2012-13-4-r25.CrossRefPubMedPubMedCentral Lackner DH, Schmidt MW, Wu S, Wolf DA, Bahler J: Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol. 2012, 13 (4): R25-10.1186/gb-2012-13-4-r25.CrossRefPubMedPubMedCentral
41.
go back to reference Coulom H, Birman S: Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci. 2004, 24 (48): 10993-10998. 10.1523/JNEUROSCI.2993-04.2004.CrossRefPubMed Coulom H, Birman S: Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci. 2004, 24 (48): 10993-10998. 10.1523/JNEUROSCI.2993-04.2004.CrossRefPubMed
42.
go back to reference Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C: Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism. Biometals. 2011, 24 (6): 1045-1057. 10.1007/s10534-011-9463-0.CrossRefPubMed Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C: Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism. Biometals. 2011, 24 (6): 1045-1057. 10.1007/s10534-011-9463-0.CrossRefPubMed
43.
44.
go back to reference Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, Glynn E, Li H, Sardiu ME, Fleharty B, et al: Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics. 2010, 9 (2): 271-284. 10.1074/mcp.M900415-MCP200.CrossRefPubMed Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, Glynn E, Li H, Sardiu ME, Fleharty B, et al: Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics. 2010, 9 (2): 271-284. 10.1074/mcp.M900415-MCP200.CrossRefPubMed
45.
go back to reference Millar NS, Buckingham SD, Sattelle DB: Stable expression of a functional homo-oligomeric Drosophila GABA receptor in a Drosophila cell line. Proc Biol Sci. 1994, 258 (1353): 307-314. 10.1098/rspb.1994.0178.CrossRefPubMed Millar NS, Buckingham SD, Sattelle DB: Stable expression of a functional homo-oligomeric Drosophila GABA receptor in a Drosophila cell line. Proc Biol Sci. 1994, 258 (1353): 307-314. 10.1098/rspb.1994.0178.CrossRefPubMed
46.
go back to reference Hosie AM, Sattelle DB: Allosteric modulation of an expressed homo-oligomeric GABA-gated chloride channel of Drosophila melanogaster. Br J Pharmacol. 1996, 117 (6): 1229-1237. 10.1111/j.1476-5381.1996.tb16720.x.CrossRefPubMedPubMedCentral Hosie AM, Sattelle DB: Allosteric modulation of an expressed homo-oligomeric GABA-gated chloride channel of Drosophila melanogaster. Br J Pharmacol. 1996, 117 (6): 1229-1237. 10.1111/j.1476-5381.1996.tb16720.x.CrossRefPubMedPubMedCentral
47.
go back to reference Gisselmann G, Plonka J, Pusch H, Hatt H: Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol. 2004, 142 (3): 409-413. 10.1038/sj.bjp.0705818.CrossRefPubMedPubMedCentral Gisselmann G, Plonka J, Pusch H, Hatt H: Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol. 2004, 142 (3): 409-413. 10.1038/sj.bjp.0705818.CrossRefPubMedPubMedCentral
48.
go back to reference Lees G, Beadle DJ, Neumann R, Benson JA: Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate. Brain Res. 1987, 401 (2): 267-278. 10.1016/0006-8993(87)91411-9.CrossRefPubMed Lees G, Beadle DJ, Neumann R, Benson JA: Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate. Brain Res. 1987, 401 (2): 267-278. 10.1016/0006-8993(87)91411-9.CrossRefPubMed
49.
go back to reference Buckingham SD, Higashino Y, Sattelle DB: Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone. Invert Neurosci. 2009, 9 (2): 85-89. 10.1007/s10158-009-0091-0.CrossRefPubMed Buckingham SD, Higashino Y, Sattelle DB: Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone. Invert Neurosci. 2009, 9 (2): 85-89. 10.1007/s10158-009-0091-0.CrossRefPubMed
50.
go back to reference Raffa RB, Cavallo F, Capasso A: Flumazenil-sensitive dose-related physical dependence in planarians produced by two benzodiazepine and one non-benzodiazepine benzodiazepine-receptor agonists. Eur J Pharmacol. 2007, 564 (1–3): 88-93.CrossRefPubMedPubMedCentral Raffa RB, Cavallo F, Capasso A: Flumazenil-sensitive dose-related physical dependence in planarians produced by two benzodiazepine and one non-benzodiazepine benzodiazepine-receptor agonists. Eur J Pharmacol. 2007, 564 (1–3): 88-93.CrossRefPubMedPubMedCentral
51.
go back to reference Lalevee N, Monier B, Senatore S, Perrin L, Semeriva M: Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol. 2006, 16 (15): 1502-1508. 10.1016/j.cub.2006.05.064.CrossRefPubMed Lalevee N, Monier B, Senatore S, Perrin L, Semeriva M: Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol. 2006, 16 (15): 1502-1508. 10.1016/j.cub.2006.05.064.CrossRefPubMed
52.
go back to reference Gurney A, Manoury B: Two-pore potassium channels in the cardiovascular system. Eur Biophys J. 2009, 38 (3): 305-318. 10.1007/s00249-008-0326-8.CrossRefPubMed Gurney A, Manoury B: Two-pore potassium channels in the cardiovascular system. Eur Biophys J. 2009, 38 (3): 305-318. 10.1007/s00249-008-0326-8.CrossRefPubMed
54.
go back to reference Riazanski V, Deriy LV, Shevchenko PD, Le B, Gomez EA, Nelson DJ: Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat Neurosci. 2011, 14 (4): 487-494. 10.1038/nn.2775.CrossRefPubMedPubMedCentral Riazanski V, Deriy LV, Shevchenko PD, Le B, Gomez EA, Nelson DJ: Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat Neurosci. 2011, 14 (4): 487-494. 10.1038/nn.2775.CrossRefPubMedPubMedCentral
55.
go back to reference Farmer LM, Le BN, Nelson DJ: CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses. J Physiol. 2013, 591 (Pt 4): 1001-1015.CrossRefPubMed Farmer LM, Le BN, Nelson DJ: CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses. J Physiol. 2013, 591 (Pt 4): 1001-1015.CrossRefPubMed
56.
go back to reference Chen TT, Klassen TL, Goldman AM, Marini C, Guerrini R, Noebels JL: Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy. Neurology. 2013, 80 (12): 1078-1085. 10.1212/WNL.0b013e31828868e7.CrossRefPubMedPubMedCentral Chen TT, Klassen TL, Goldman AM, Marini C, Guerrini R, Noebels JL: Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy. Neurology. 2013, 80 (12): 1078-1085. 10.1212/WNL.0b013e31828868e7.CrossRefPubMedPubMedCentral
Metadata
Title
Effects of midazolam, pentobarbital and ketamine on the mRNA expression of ion channels in a model organism Daphnia pulex
Authors
Changhong Dong
Anmin Hu
Yang Ni
Yunxia Zuo
Guo Hua Li
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2013
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/1471-2253-13-32

Other articles of this Issue 1/2013

BMC Anesthesiology 1/2013 Go to the issue