Skip to main content
Top
Published in: Diabetologia 10/2016

Open Access 01-10-2016 | Review

Effects of exercise training on intrahepatic lipid content in humans

Authors: Bram Brouwers, Matthijs K. C. Hesselink, Patrick Schrauwen, Vera B. Schrauwen-Hinderling

Published in: Diabetologia | Issue 10/2016

Login to get access

Abstract

Non-alcoholic fatty liver (NAFL) is the most common liver disorder in western society. Various factors may play a role in determining hepatic fat content, such as delivery of lipids to the liver, de novo lipogenesis, hepatic lipid oxidation, secretion of intrahepatic lipids to the circulation or a combination of these. If delivery of lipids to the liver outweighs the sum of hepatic lipid oxidation and secretion, the intrahepatic lipid (IHL) content starts to increase and NAFL may develop. NAFL is closely related to obesity and insulin resistance and a fatty liver increases the vulnerability to type 2 diabetes development. Exercise training is a cornerstone in the treatment and prevention of type 2 diabetes. There is a large body of literature describing the beneficial metabolic consequences of exercise training on skeletal muscle metabolism. Recent studies have started to investigate the effects of exercise training on liver metabolism but data is still limited. Here, first, we briefly discuss the routes by which IHL content is modulated. Second, we review whether and how these contributing routes might be modulated by long-term exercise training. Third, we focus on the effects of acute exercise on IHL metabolism, since exercise also might affect hepatic metabolism in the physically active state. This will give insight into whether the effect of exercise training on IHL could be explained by the accumulated effect of acute bouts of exercise, or whether adaptations might occur only after long-term exercise training. The primary focus of this review will be on observations made in humans. Where human data is missing, data obtained from well-accepted animal models will be used.
Literature
1.
go back to reference Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781CrossRefPubMedPubMedCentral Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781CrossRefPubMedPubMedCentral
2.
go back to reference Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5:1544–1560CrossRefPubMedPubMedCentral Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5:1544–1560CrossRefPubMedPubMedCentral
3.
go back to reference Johnson NA, Walton DW, Sachinwalla T et al (2008) Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology 47:1513–1523CrossRefPubMed Johnson NA, Walton DW, Sachinwalla T et al (2008) Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology 47:1513–1523CrossRefPubMed
4.
5.
go back to reference Targher G, Bertolini L, Padovani R et al (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218CrossRefPubMed Targher G, Bertolini L, Padovani R et al (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218CrossRefPubMed
6.
go back to reference Bradbury MW (2006) Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 290:G194–G198CrossRefPubMed Bradbury MW (2006) Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 290:G194–G198CrossRefPubMed
7.
8.
go back to reference Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810CrossRefPubMedPubMedCentral Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810CrossRefPubMedPubMedCentral
9.
go back to reference Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351CrossRefPubMedPubMedCentral Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351CrossRefPubMedPubMedCentral
10.
go back to reference Holt HB, Wild SH, Wood PJ et al (2006) Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia 49:141–148CrossRefPubMed Holt HB, Wild SH, Wood PJ et al (2006) Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia 49:141–148CrossRefPubMed
11.
go back to reference Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028CrossRefPubMed Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028CrossRefPubMed
12.
go back to reference Tiikkainen M, Tamminen M, Hakkinen AM et al (2002) Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10:859–867CrossRefPubMed Tiikkainen M, Tamminen M, Hakkinen AM et al (2002) Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10:859–867CrossRefPubMed
13.
go back to reference Sanyal AJ, Campbell-Sargent C, Mirshahi F et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192CrossRefPubMed Sanyal AJ, Campbell-Sargent C, Mirshahi F et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192CrossRefPubMed
14.
go back to reference Hsieh J, Hayashi AA, Webb J, Adeli K (2008) Postprandial dyslipidemia in insulin resistance: mechanisms and role of intestinal insulin sensitivity. Atheroscler Suppl 9:7–13CrossRefPubMed Hsieh J, Hayashi AA, Webb J, Adeli K (2008) Postprandial dyslipidemia in insulin resistance: mechanisms and role of intestinal insulin sensitivity. Atheroscler Suppl 9:7–13CrossRefPubMed
15.
go back to reference van Hees AM, Jans A, Hul GB, Roche HM, Saris WH, Blaak EE (2011) Skeletal muscle fatty acid handling in insulin resistant men. Obesity 19:1350–1359CrossRefPubMed van Hees AM, Jans A, Hul GB, Roche HM, Saris WH, Blaak EE (2011) Skeletal muscle fatty acid handling in insulin resistant men. Obesity 19:1350–1359CrossRefPubMed
16.
go back to reference Armstrong MJ, Hazlehurst JM, Hull D et al (2014) Abdominal subcutaneous adipose tissue insulin resistance and lipolysis in patients with non-alcoholic steatohepatitis. Diabetes Obes Metab 16:651–660CrossRefPubMedPubMedCentral Armstrong MJ, Hazlehurst JM, Hull D et al (2014) Abdominal subcutaneous adipose tissue insulin resistance and lipolysis in patients with non-alcoholic steatohepatitis. Diabetes Obes Metab 16:651–660CrossRefPubMedPubMedCentral
17.
go back to reference Jacome-Sosa MM, Parks EJ (2014) Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol 25:213–220CrossRefPubMed Jacome-Sosa MM, Parks EJ (2014) Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol 25:213–220CrossRefPubMed
18.
go back to reference Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–933CrossRefPubMed Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–933CrossRefPubMed
19.
go back to reference Barrows BR, Timlin MT, Parks EJ (2005) Spillover of dietary fatty acids and use of serum nonesterified fatty acids for the synthesis of VLDL-triacylglycerol under two different feeding regimens. Diabetes 54:2668–2673CrossRefPubMed Barrows BR, Timlin MT, Parks EJ (2005) Spillover of dietary fatty acids and use of serum nonesterified fatty acids for the synthesis of VLDL-triacylglycerol under two different feeding regimens. Diabetes 54:2668–2673CrossRefPubMed
20.
go back to reference Utzschneider KM, Bayer-Carter JL, Arbuckle MD, Tidwell JM, Richards TL, Craft S (2013) Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br J Nutr 109:1096–1104CrossRefPubMed Utzschneider KM, Bayer-Carter JL, Arbuckle MD, Tidwell JM, Richards TL, Craft S (2013) Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br J Nutr 109:1096–1104CrossRefPubMed
21.
go back to reference van Herpen NA, Schrauwen-Hinderling VB, Schaart G, Mensink RP, Schrauwen P (2011) Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J Clin Endocrinol Metab 96:E691–E695CrossRefPubMed van Herpen NA, Schrauwen-Hinderling VB, Schaart G, Mensink RP, Schrauwen P (2011) Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J Clin Endocrinol Metab 96:E691–E695CrossRefPubMed
22.
go back to reference Westerbacka J, Lammi K, Hakkinen AM et al (2005) Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90:2804–2809CrossRefPubMed Westerbacka J, Lammi K, Hakkinen AM et al (2005) Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90:2804–2809CrossRefPubMed
24.
go back to reference Lecoultre V, Egli L, Carrel G et al (2013) Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity 21:782–785CrossRefPubMed Lecoultre V, Egli L, Carrel G et al (2013) Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity 21:782–785CrossRefPubMed
25.
go back to reference Sevastianova K, Santos A, Kotronen A et al (2012) Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Am J Clin Nutr 96:727–734CrossRefPubMed Sevastianova K, Santos A, Kotronen A et al (2012) Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Am J Clin Nutr 96:727–734CrossRefPubMed
26.
go back to reference Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metab Clin Exp 63:895–902CrossRefPubMed Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metab Clin Exp 63:895–902CrossRefPubMed
27.
go back to reference Schwarz JM, Linfoot P, Dare D, Aghajanian K (2003) Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 77:43–50PubMed Schwarz JM, Linfoot P, Dare D, Aghajanian K (2003) Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 77:43–50PubMed
28.
go back to reference Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–735CrossRefPubMed Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–735CrossRefPubMed
30.
go back to reference Visser ME, Lammers NM, Nederveen AJ et al (2011) Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia. Diabetologia 54:2113–2121CrossRefPubMedPubMedCentral Visser ME, Lammers NM, Nederveen AJ et al (2011) Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia. Diabetologia 54:2113–2121CrossRefPubMedPubMedCentral
31.
go back to reference Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S (2008) Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134:424–431CrossRefPubMed Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S (2008) Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134:424–431CrossRefPubMed
32.
go back to reference Fabbrini E, Magkos F, Mohammed BS et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 106:15430–15435CrossRefPubMedPubMedCentral Fabbrini E, Magkos F, Mohammed BS et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 106:15430–15435CrossRefPubMedPubMedCentral
33.
go back to reference Adiels M, Taskinen MR, Packard C et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–765CrossRefPubMed Adiels M, Taskinen MR, Packard C et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–765CrossRefPubMed
34.
go back to reference Annuzzi G, De Natale C, Iovine C et al (2004) Insulin resistance is independently associated with postprandial alterations of triglyceride-rich lipoproteins in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 24:2397–2402CrossRefPubMed Annuzzi G, De Natale C, Iovine C et al (2004) Insulin resistance is independently associated with postprandial alterations of triglyceride-rich lipoproteins in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 24:2397–2402CrossRefPubMed
35.
go back to reference Cassader M, Gambino R, Musso G et al (2001) Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids 36:1117–1124CrossRefPubMed Cassader M, Gambino R, Musso G et al (2001) Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids 36:1117–1124CrossRefPubMed
36.
go back to reference Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S (2010) Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring) 18:1510–1515CrossRef Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S (2010) Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring) 18:1510–1515CrossRef
37.
go back to reference McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420CrossRefPubMed McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420CrossRefPubMed
38.
go back to reference Iozzo P, Bucci M, Roivainen A, et al (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846-856, 856 e841-846 Iozzo P, Bucci M, Roivainen A, et al (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846-856, 856 e841-846
39.
go back to reference Koliaki C, Szendroedi J, Kaul K et al (2015) Adaptation of hepatic mitochondrial function in humans with non-alcoholic Fatty liver is lost in steatohepatitis. Cell Metab 21:739–746CrossRefPubMed Koliaki C, Szendroedi J, Kaul K et al (2015) Adaptation of hepatic mitochondrial function in humans with non-alcoholic Fatty liver is lost in steatohepatitis. Cell Metab 21:739–746CrossRefPubMed
40.
go back to reference Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM (1999) Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282:1659–1664CrossRefPubMed Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM (1999) Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282:1659–1664CrossRefPubMed
41.
go back to reference Otsuka H, Harada M, Koga K, Nishitani H (1999) Effects of hepatic impairment on the metabolism of fructose and 5-fluorouracil, as studied in fatty liver models using in vivo 31P-MRS and 19F-MRS. Magn Reson Imaging 17:283–290CrossRefPubMed Otsuka H, Harada M, Koga K, Nishitani H (1999) Effects of hepatic impairment on the metabolism of fructose and 5-fluorouracil, as studied in fatty liver models using in vivo 31P-MRS and 19F-MRS. Magn Reson Imaging 17:283–290CrossRefPubMed
42.
go back to reference Perez-Carreras M, Del Hoyo P, Martin MA et al (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38:999–1007CrossRefPubMed Perez-Carreras M, Del Hoyo P, Martin MA et al (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38:999–1007CrossRefPubMed
43.
go back to reference Bacchi E, Negri C, Targher G et al (2013) Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with NAFLD (The RAED2 randomized trial). Hepatology 58:1287–1295CrossRefPubMed Bacchi E, Negri C, Targher G et al (2013) Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with NAFLD (The RAED2 randomized trial). Hepatology 58:1287–1295CrossRefPubMed
44.
go back to reference Finucane FM, Sharp SJ, Purslow LR et al (2010) The effects of aerobic exercise on metabolic risk, insulin sensitivity and intrahepatic lipid in healthy older people from the Hertfordshire Cohort Study: a randomised controlled trial. Diabetologia 53:624–631CrossRefPubMed Finucane FM, Sharp SJ, Purslow LR et al (2010) The effects of aerobic exercise on metabolic risk, insulin sensitivity and intrahepatic lipid in healthy older people from the Hertfordshire Cohort Study: a randomised controlled trial. Diabetologia 53:624–631CrossRefPubMed
45.
go back to reference Hallsworth K, Fattakhova G, Hollingsworth KG et al (2011) Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60:1278–1283CrossRefPubMedPubMedCentral Hallsworth K, Fattakhova G, Hollingsworth KG et al (2011) Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60:1278–1283CrossRefPubMedPubMedCentral
46.
go back to reference Johnson NA, Sachinwalla T, Walton DW et al (2009) Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 50:1105–1112CrossRefPubMed Johnson NA, Sachinwalla T, Walton DW et al (2009) Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 50:1105–1112CrossRefPubMed
47.
go back to reference Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S (2012) Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes 61:2787–2795CrossRefPubMedPubMedCentral Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S (2012) Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes 61:2787–2795CrossRefPubMedPubMedCentral
48.
go back to reference Lee S, Deldin AR, White D et al (2013) Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab 305:E1222–E1229CrossRefPubMedPubMedCentral Lee S, Deldin AR, White D et al (2013) Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab 305:E1222–E1229CrossRefPubMedPubMedCentral
49.
go back to reference Pugh CJA, Sprung VS, Kemp GJ et al (2014) Exercise training reverses endothelial dysfunction in non-alcoholic fatty liver disease. Am J Physiol Heart Circ Physiol 307:1298–1306CrossRef Pugh CJA, Sprung VS, Kemp GJ et al (2014) Exercise training reverses endothelial dysfunction in non-alcoholic fatty liver disease. Am J Physiol Heart Circ Physiol 307:1298–1306CrossRef
50.
go back to reference Sullivan S, Kirk EP, Mittendorfer B, Patterson BW, Klein S (2012) Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 55:1738–1745CrossRefPubMedPubMedCentral Sullivan S, Kirk EP, Mittendorfer B, Patterson BW, Klein S (2012) Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 55:1738–1745CrossRefPubMedPubMedCentral
51.
go back to reference van der Heijden GJ, Wang ZJ, Chu ZD et al (2010) A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, Hispanic adolescents. Obesity (Silver Spring) 18:384–390CrossRef van der Heijden GJ, Wang ZJ, Chu ZD et al (2010) A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, Hispanic adolescents. Obesity (Silver Spring) 18:384–390CrossRef
52.
go back to reference Palmer M, Schaffner F (1990) Effect of weight reduction on hepatic abnormalities in overweight patients. Gastroenterology 99:1408–1413PubMed Palmer M, Schaffner F (1990) Effect of weight reduction on hepatic abnormalities in overweight patients. Gastroenterology 99:1408–1413PubMed
53.
go back to reference Thoma C, Day CP, Trenell MI (2012) Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 56:255–266CrossRefPubMed Thoma C, Day CP, Trenell MI (2012) Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 56:255–266CrossRefPubMed
54.
go back to reference Shojaee-Moradie F, Baynes KC, Pentecost C et al (2007) Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia 50:404–413CrossRefPubMed Shojaee-Moradie F, Baynes KC, Pentecost C et al (2007) Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia 50:404–413CrossRefPubMed
55.
go back to reference Phielix E, Meex R, Ouwens DM et al (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472–2478CrossRefPubMedPubMedCentral Phielix E, Meex R, Ouwens DM et al (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472–2478CrossRefPubMedPubMedCentral
56.
go back to reference You T, Berman DM, Ryan AS, Nicklas BJ (2004) Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab 89:1739–1746CrossRefPubMed You T, Berman DM, Ryan AS, Nicklas BJ (2004) Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab 89:1739–1746CrossRefPubMed
57.
go back to reference Lange KH, Lorentsen J, Isaksson F et al (2001) Endurance training and GH administration in elderly women: effects on abdominal adipose tissue lipolysis. Am J Physiol Endocrinol Metab 280:E886–E897PubMed Lange KH, Lorentsen J, Isaksson F et al (2001) Endurance training and GH administration in elderly women: effects on abdominal adipose tissue lipolysis. Am J Physiol Endocrinol Metab 280:E886–E897PubMed
58.
go back to reference Hickner RC, Racette SB, Binder EF, Fisher JS, Kohrt WM (1999) Suppression of whole body and regional lipolysis by insulin: effects of obesity and exercise. J Clin Endocrinol Metab 84:3886–3895PubMed Hickner RC, Racette SB, Binder EF, Fisher JS, Kohrt WM (1999) Suppression of whole body and regional lipolysis by insulin: effects of obesity and exercise. J Clin Endocrinol Metab 84:3886–3895PubMed
59.
go back to reference Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59:572–579CrossRefPubMed Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59:572–579CrossRefPubMed
60.
go back to reference Polak J, Moro C, Klimcakova E et al (2005) Dynamic strength training improves insulin sensitivity and functional balance between adrenergic alpha 2A and beta pathways in subcutaneous adipose tissue of obese subjects. Diabetologia 48:2631–2640CrossRefPubMed Polak J, Moro C, Klimcakova E et al (2005) Dynamic strength training improves insulin sensitivity and functional balance between adrenergic alpha 2A and beta pathways in subcutaneous adipose tissue of obese subjects. Diabetologia 48:2631–2640CrossRefPubMed
61.
go back to reference Malin SK, Haus JM, Solomon TP, Blaszczak A, Kashyap SR, Kirwan JP (2013) Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 305:E1292–E1298CrossRefPubMedPubMedCentral Malin SK, Haus JM, Solomon TP, Blaszczak A, Kashyap SR, Kirwan JP (2013) Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 305:E1292–E1298CrossRefPubMedPubMedCentral
62.
go back to reference Solomon TP, Haus JM, Marchetti CM, Stanley WC, Kirwan JP (2009) Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance. Am J Physiol Endocrinol Metab 297:E552–E559CrossRefPubMedPubMedCentral Solomon TP, Haus JM, Marchetti CM, Stanley WC, Kirwan JP (2009) Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance. Am J Physiol Endocrinol Metab 297:E552–E559CrossRefPubMedPubMedCentral
63.
go back to reference DiPietro L, Dziura J, Yeckel CW, Neufer PD (2006) Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol 100:142–149CrossRefPubMed DiPietro L, Dziura J, Yeckel CW, Neufer PD (2006) Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol 100:142–149CrossRefPubMed
64.
go back to reference de Glisezinski I, Moro C, Pillard F et al (2003) Aerobic training improves exercise-induced lipolysis in SCAT and lipid utilization in overweight men. Am J Physiol Endocrinol Metab 285:E984–E990CrossRefPubMed de Glisezinski I, Moro C, Pillard F et al (2003) Aerobic training improves exercise-induced lipolysis in SCAT and lipid utilization in overweight men. Am J Physiol Endocrinol Metab 285:E984–E990CrossRefPubMed
65.
go back to reference Tunstall RJ, Mehan KA, Wadley GD et al (2002) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283:E66–E72CrossRefPubMed Tunstall RJ, Mehan KA, Wadley GD et al (2002) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283:E66–E72CrossRefPubMed
66.
go back to reference Iozzo P, Takala T, Oikonen V et al (2004) Effect of training status on regional disposal of circulating free fatty acids in the liver and skeletal muscle during physiological hyperinsulinemia. Diabetes Care 27:2172–2177CrossRefPubMed Iozzo P, Takala T, Oikonen V et al (2004) Effect of training status on regional disposal of circulating free fatty acids in the liver and skeletal muscle during physiological hyperinsulinemia. Diabetes Care 27:2172–2177CrossRefPubMed
67.
go back to reference Hannukainen JC, Nuutila P, Borra R et al (2007) Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins. J Physiol 578:347–358CrossRefPubMed Hannukainen JC, Nuutila P, Borra R et al (2007) Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins. J Physiol 578:347–358CrossRefPubMed
68.
go back to reference Patsch JR, Karlin JB, Scott LW, Smith LC, Gotto AM Jr (1983) Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A 80:1449–1453CrossRefPubMedPubMedCentral Patsch JR, Karlin JB, Scott LW, Smith LC, Gotto AM Jr (1983) Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A 80:1449–1453CrossRefPubMedPubMedCentral
69.
go back to reference Ziogas GG, Thomas TR, Harris WS (1997) Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution. Med Sci Sports Exerc 29:986–991CrossRefPubMed Ziogas GG, Thomas TR, Harris WS (1997) Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution. Med Sci Sports Exerc 29:986–991CrossRefPubMed
70.
go back to reference Cohen JC, Noakes TD, Benade AJ (1989) Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am J Clin Nutr 49:443–447PubMed Cohen JC, Noakes TD, Benade AJ (1989) Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am J Clin Nutr 49:443–447PubMed
71.
go back to reference Brunzell JD, Chait A, Nikkila EA, Ehnholm C, Huttunen JK, Steiner G (1980) Heterogeneity of primary lipoprotein lipase deficiency. Metabolism 29:624–629CrossRefPubMed Brunzell JD, Chait A, Nikkila EA, Ehnholm C, Huttunen JK, Steiner G (1980) Heterogeneity of primary lipoprotein lipase deficiency. Metabolism 29:624–629CrossRefPubMed
72.
go back to reference Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD (1987) Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metab Clin Exp 36:188–192CrossRefPubMed Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD (1987) Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metab Clin Exp 36:188–192CrossRefPubMed
73.
go back to reference Podl TR, Zmuda JM, Yurgalevitch SM et al (1994) Lipoprotein lipase activity and plasma triglyceride clearance are elevated in endurance-trained women. Metabolism 43:808–813CrossRefPubMed Podl TR, Zmuda JM, Yurgalevitch SM et al (1994) Lipoprotein lipase activity and plasma triglyceride clearance are elevated in endurance-trained women. Metabolism 43:808–813CrossRefPubMed
74.
go back to reference Ukkola O, Garenc C, Perusse L et al (2001) Genetic variation at the lipoprotein lipase locus and plasma lipoprotein and insulin levels in the Quebec Family Study. Atherosclerosis 158:199–206CrossRefPubMed Ukkola O, Garenc C, Perusse L et al (2001) Genetic variation at the lipoprotein lipase locus and plasma lipoprotein and insulin levels in the Quebec Family Study. Atherosclerosis 158:199–206CrossRefPubMed
75.
go back to reference Teran-Garcia M, Santoro N, Rankinen T et al (2005) Hepatic lipase gene variant -514C>T is associated with lipoprotein and insulin sensitivity response to regular exercise: the HERITAGE Family Study. Diabetes 54:2251–2255CrossRefPubMed Teran-Garcia M, Santoro N, Rankinen T et al (2005) Hepatic lipase gene variant -514C>T is associated with lipoprotein and insulin sensitivity response to regular exercise: the HERITAGE Family Study. Diabetes 54:2251–2255CrossRefPubMed
76.
go back to reference Jansen H (2004) Hepatic lipase: friend or foe and under what circumstances? Curr Atheroscler Rep 6:343–347CrossRefPubMed Jansen H (2004) Hepatic lipase: friend or foe and under what circumstances? Curr Atheroscler Rep 6:343–347CrossRefPubMed
77.
go back to reference Rector RS, Thyfault JP, Morris RT et al (2008) Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 294:G619–G626CrossRefPubMed Rector RS, Thyfault JP, Morris RT et al (2008) Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 294:G619–G626CrossRefPubMed
78.
go back to reference Linden MA, Fletcher JA, Morris EM et al (2014) Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab 306:E300–E310CrossRefPubMed Linden MA, Fletcher JA, Morris EM et al (2014) Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab 306:E300–E310CrossRefPubMed
79.
go back to reference Rector RS, Uptergrove GM, Morris EM et al (2011) Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol 300:G874–G883CrossRefPubMedPubMedCentral Rector RS, Uptergrove GM, Morris EM et al (2011) Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol 300:G874–G883CrossRefPubMedPubMedCentral
80.
go back to reference van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565CrossRefPubMed van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565CrossRefPubMed
81.
go back to reference Alam S, Stolinski M, Pentecost C et al (2004) The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes. J Clin Endocrinol Metab 89:688–694CrossRefPubMed Alam S, Stolinski M, Pentecost C et al (2004) The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes. J Clin Endocrinol Metab 89:688–694CrossRefPubMed
82.
go back to reference Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS (2008) High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab 295:E851–E858CrossRefPubMed Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS (2008) High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab 295:E851–E858CrossRefPubMed
83.
go back to reference Haase TN, Ringholm S, Leick L et al (2011) Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver. Am J Physiol Regul Integr Comp Physiol 301:R1501–R1509CrossRefPubMed Haase TN, Ringholm S, Leick L et al (2011) Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver. Am J Physiol Regul Integr Comp Physiol 301:R1501–R1509CrossRefPubMed
85.
go back to reference Shephard RJ, Johnson N (2015) Effects of physical activity upon the liver. Eur J Appl Physiol 115:1–46CrossRefPubMed Shephard RJ, Johnson N (2015) Effects of physical activity upon the liver. Eur J Appl Physiol 115:1–46CrossRefPubMed
86.
go back to reference Simonsen L, Henriksen O, Enevoldsen LH, Bulow J (2004) The effect of exercise on regional adipose tissue and splanchnic lipid metabolism in overweight type 2 diabetic subjects. Diabetologia 47:652–659CrossRefPubMed Simonsen L, Henriksen O, Enevoldsen LH, Bulow J (2004) The effect of exercise on regional adipose tissue and splanchnic lipid metabolism in overweight type 2 diabetic subjects. Diabetologia 47:652–659CrossRefPubMed
87.
go back to reference Van Hall G, Bulow J, Sacchetti M, Al Mulla N, Lyngso D, Simonsen L (2002) Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise. J Physiol 543:1033–1046CrossRefPubMedPubMedCentral Van Hall G, Bulow J, Sacchetti M, Al Mulla N, Lyngso D, Simonsen L (2002) Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise. J Physiol 543:1033–1046CrossRefPubMedPubMedCentral
88.
go back to reference Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108:13705–13709CrossRefPubMedPubMedCentral Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108:13705–13709CrossRefPubMedPubMedCentral
89.
go back to reference Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017CrossRefPubMed Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017CrossRefPubMed
90.
go back to reference Stanford KI, Goodyear LJ (2014) Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38:308–314CrossRefPubMedPubMedCentral Stanford KI, Goodyear LJ (2014) Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38:308–314CrossRefPubMedPubMedCentral
91.
go back to reference Sondergaard E, Rahbek I, Sorensen LP et al (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol Endocrinol Metab 300:E939–E944CrossRefPubMedPubMedCentral Sondergaard E, Rahbek I, Sorensen LP et al (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol Endocrinol Metab 300:E939–E944CrossRefPubMedPubMedCentral
92.
go back to reference Nellemann B, Sondergaard E, Jensen J et al (2014) Kinetics and utilization of lipid sources during acute exercise and acipimox. Am J Physiol Endocrinol Metab 307:E199–E208CrossRefPubMed Nellemann B, Sondergaard E, Jensen J et al (2014) Kinetics and utilization of lipid sources during acute exercise and acipimox. Am J Physiol Endocrinol Metab 307:E199–E208CrossRefPubMed
93.
go back to reference Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B (2006) Lipid metabolism response to a single, prolonged bout of endurance exercise in healthy young men. Am J Physiol Endocrinol Metab 290:E355–E362CrossRefPubMed Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B (2006) Lipid metabolism response to a single, prolonged bout of endurance exercise in healthy young men. Am J Physiol Endocrinol Metab 290:E355–E362CrossRefPubMed
94.
go back to reference Annuzzi G, Jansson E, Kaijser L, Holmquist L, Carlson LA (1987) Increased removal rate of exogenous triglycerides after prolonged exercise in man: time course and effect of exercise duration. Metab Clin Exp 36:438–443CrossRefPubMed Annuzzi G, Jansson E, Kaijser L, Holmquist L, Carlson LA (1987) Increased removal rate of exogenous triglycerides after prolonged exercise in man: time course and effect of exercise duration. Metab Clin Exp 36:438–443CrossRefPubMed
95.
go back to reference Cullinane E, Siconolfi S, Saritelli A, Thompson PD (1982) Acute decrease in serum triglycerides with exercise: is there a threshold for an exercise effect? Metabolism 31:844–847CrossRefPubMed Cullinane E, Siconolfi S, Saritelli A, Thompson PD (1982) Acute decrease in serum triglycerides with exercise: is there a threshold for an exercise effect? Metabolism 31:844–847CrossRefPubMed
96.
go back to reference Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174PubMed Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174PubMed
97.
go back to reference Altena TS, Michaelson JL, Ball SD, Thomas TR (2004) Single sessions of intermittent and continuous exercise and postprandial lipemia. Med Sci Sports Exerc 36:1364–1371CrossRefPubMed Altena TS, Michaelson JL, Ball SD, Thomas TR (2004) Single sessions of intermittent and continuous exercise and postprandial lipemia. Med Sci Sports Exerc 36:1364–1371CrossRefPubMed
98.
go back to reference Cullinane E, Lazarus B, Thompson PD, Saratelli A, Herbert PN (1981) Acute effects of a single exercise session on serum lipids in untrained men. Clin Chim Acta 109:341–344CrossRefPubMed Cullinane E, Lazarus B, Thompson PD, Saratelli A, Herbert PN (1981) Acute effects of a single exercise session on serum lipids in untrained men. Clin Chim Acta 109:341–344CrossRefPubMed
99.
go back to reference Bellou E, Siopi A, Galani M et al (2013) Acute effects of exercise and calorie restriction on triglyceride metabolism in women. Med Sci Sports Exerc 45:455–461CrossRefPubMedPubMedCentral Bellou E, Siopi A, Galani M et al (2013) Acute effects of exercise and calorie restriction on triglyceride metabolism in women. Med Sci Sports Exerc 45:455–461CrossRefPubMedPubMedCentral
Metadata
Title
Effects of exercise training on intrahepatic lipid content in humans
Authors
Bram Brouwers
Matthijs K. C. Hesselink
Patrick Schrauwen
Vera B. Schrauwen-Hinderling
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4037-x

Other articles of this Issue 10/2016

Diabetologia 10/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.