Skip to main content
Top
Published in: Lasers in Medical Science 4/2015

01-05-2015 | Original Article

Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue

Authors: William R. Calhoun III, Ilko K. Ilev

Published in: Lasers in Medical Science | Issue 4/2015

Login to get access

Abstract

Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such as harmonic generation (HG), especially in tissues with significant nonlinear susceptibilities such as the cornea. HG in corneal tissue has been demonstrated in nonlinear harmonic microscopy using low-power FSLs. Furthermore, the wavelength ranges of harmonic spectral emissions generated in corneal tissues are known to be phototoxic above certain intensities. We have investigated how the critical FSL parameters pulse energy, pulse repetition rate, and numerical aperture influence both second (SHG) and third harmonic generation (THG) in corneal tissue. Experimental results demonstrated corresponding increases in HG intensity with increasing repetition rate and numerical aperture. HG duration decreased with increasing repetition rate and pulse energy. The data also demonstrated a significant difference in HG between FSL parameters representing the two most common classes of FSL therapeutic devices.
Literature
1.
go back to reference Hoy CL, Ferhanoglu O, Yildirim M, Kim KH, Karajanagi SS, Chan KMC et al (2014) Clinical ultrafast laser surgery: recent advances and future directions, IEEE J Sel Top Quantum Electron 20 Hoy CL, Ferhanoglu O, Yildirim M, Kim KH, Karajanagi SS, Chan KMC et al (2014) Clinical ultrafast laser surgery: recent advances and future directions, IEEE J Sel Top Quantum Electron 20
2.
go back to reference Ozulken K, Cabot F, Yoo SH (2013) Applications of femtosecond lasers in ophthalmic surgery. Expert Rev Med Devices 10:115–124CrossRefPubMed Ozulken K, Cabot F, Yoo SH (2013) Applications of femtosecond lasers in ophthalmic surgery. Expert Rev Med Devices 10:115–124CrossRefPubMed
3.
go back to reference Strassl M, Wieger V, Brodoceanu D, Beer F, Moritz A, Wintner E (2008) Ultra-short pulse laser ablation of biological hard tissue and biocompatibles. J Laser Micro Nanoeng 3:30–40CrossRef Strassl M, Wieger V, Brodoceanu D, Beer F, Moritz A, Wintner E (2008) Ultra-short pulse laser ablation of biological hard tissue and biocompatibles. J Laser Micro Nanoeng 3:30–40CrossRef
4.
go back to reference Dutra-Correa M, Nicolodelli G, Rodrigues JR, Kurachi C, Bagnato VS (2011) Femtosecond laser ablation on dental hard tissues—analysis of ablated profile near an interface using local effective intensity. Laser Phys 21:965–971CrossRef Dutra-Correa M, Nicolodelli G, Rodrigues JR, Kurachi C, Bagnato VS (2011) Femtosecond laser ablation on dental hard tissues—analysis of ablated profile near an interface using local effective intensity. Laser Phys 21:965–971CrossRef
5.
go back to reference Meesat R, Belmouaddine H, Allard JF, Tanguay-Renaud C, Lemay R, Brastaviceanu T et al (2012) Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proc Natl Acad Sci U S A 109:E2508–E2513CrossRefPubMedCentralPubMed Meesat R, Belmouaddine H, Allard JF, Tanguay-Renaud C, Lemay R, Brastaviceanu T et al (2012) Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proc Natl Acad Sci U S A 109:E2508–E2513CrossRefPubMedCentralPubMed
6.
go back to reference Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR (2010) Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat Nanotechnol 5:607–611CrossRefPubMedCentralPubMed Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR (2010) Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat Nanotechnol 5:607–611CrossRefPubMedCentralPubMed
7.
go back to reference Binder PS (2010) Femtosecond applications for anterior segment surgery. Eye Contact Lens 36:282–285CrossRefPubMed Binder PS (2010) Femtosecond applications for anterior segment surgery. Eye Contact Lens 36:282–285CrossRefPubMed
8.
go back to reference Daukantas P (2010) Lasers in ophthalmology. Opt Photonics News 21:28 Daukantas P (2010) Lasers in ophthalmology. Opt Photonics News 21:28
9.
go back to reference Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB et al (2013) Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology 120:e5–e20CrossRefPubMed Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB et al (2013) Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology 120:e5–e20CrossRefPubMed
10.
go back to reference Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ (2012) Femtosecond laser technology in corneal refractive surgery: a review. J Refract Surg (Thorofare, NJ: 1995) 28:912–920CrossRef Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ (2012) Femtosecond laser technology in corneal refractive surgery: a review. J Refract Surg (Thorofare, NJ: 1995) 28:912–920CrossRef
11.
go back to reference Reddy KP, Kandulla J, Auffarth GU (2013) Effectiveness and safety of femtosecond laser-assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg 39:1297–1306CrossRefPubMed Reddy KP, Kandulla J, Auffarth GU (2013) Effectiveness and safety of femtosecond laser-assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg 39:1297–1306CrossRefPubMed
12.
go back to reference Naranjo-Tackman R (2011) How a femtosecond laser increases safety and precision in cataract surgery? Curr Opin Ophthalmol 22:53–57PubMed Naranjo-Tackman R (2011) How a femtosecond laser increases safety and precision in cataract surgery? Curr Opin Ophthalmol 22:53–57PubMed
13.
go back to reference He L, Sheehy K, Culbertson W (2011) Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol 22:43–52PubMed He L, Sheehy K, Culbertson W (2011) Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol 22:43–52PubMed
14.
go back to reference Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047CrossRef Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047CrossRef
15.
go back to reference Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644CrossRefPubMed Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644CrossRefPubMed
16.
go back to reference Heisterkamp A, Ripken T, Mamom T, Drommer W, Welling H, Ertmer W et al (2002) Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl Phys B-Lasers Opt 74:419–425CrossRef Heisterkamp A, Ripken T, Mamom T, Drommer W, Welling H, Ertmer W et al (2002) Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl Phys B-Lasers Opt 74:419–425CrossRef
17.
go back to reference Harzic RL, Bückle R, Wüllner C, Donitzky C, König K (2005) Laser safety aspects for refractive eye surgery with femtosecond laser pulses. Med Laser Appl 20:233–238CrossRef Harzic RL, Bückle R, Wüllner C, Donitzky C, König K (2005) Laser safety aspects for refractive eye surgery with femtosecond laser pulses. Med Laser Appl 20:233–238CrossRef
18.
go back to reference Boyd R (2003) Nonlinear optics. Academic, San Diego Boyd R (2003) Nonlinear optics. Academic, San Diego
19.
go back to reference Hecht E (2002) Optics. Pearson, San Francisco Hecht E (2002) Optics. Pearson, San Francisco
20.
go back to reference Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512CrossRefPubMed Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512CrossRefPubMed
21.
go back to reference Bueno JM, Gualda EJ, Artal P (2011) Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy. Cornea 30:692–701CrossRefPubMed Bueno JM, Gualda EJ, Artal P (2011) Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy. Cornea 30:692–701CrossRefPubMed
22.
go back to reference Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129PubMed Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129PubMed
23.
go back to reference Boyd R (2008) Nonlinear optics, 3rd edn. Academic, Burlington Boyd R (2008) Nonlinear optics, 3rd edn. Academic, Burlington
24.
go back to reference New G (2011) An introduction to nonlinear optics. Cambridge University Press, CambridgeCrossRef New G (2011) An introduction to nonlinear optics. Cambridge University Press, CambridgeCrossRef
25.
go back to reference Jay L, Brocas A, Singh K, Kieffer JC, Brunette I, Ozaki T (2008) Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express 16:16284CrossRefPubMed Jay L, Brocas A, Singh K, Kieffer JC, Brunette I, Ozaki T (2008) Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express 16:16284CrossRefPubMed
26.
go back to reference Olivier N, Aptel F, Plamann K, Schanne-Klein M-C, Beaurepaire E (2010) Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea. Opt Express 18:5028–5040CrossRefPubMed Olivier N, Aptel F, Plamann K, Schanne-Klein M-C, Beaurepaire E (2010) Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea. Opt Express 18:5028–5040CrossRefPubMed
27.
go back to reference Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T et al (2007) Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci 48:1087–1094CrossRefPubMedCentralPubMed Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T et al (2007) Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci 48:1087–1094CrossRefPubMedCentralPubMed
28.
29.
go back to reference Lubatschowski H (2008) Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg 24:102–107 Lubatschowski H (2008) Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg 24:102–107
30.
go back to reference Nuzzo V, Savoldelli M, Legeais JM, Plamann K (2010) Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser. J Biomed Opt 15:038003CrossRefPubMed Nuzzo V, Savoldelli M, Legeais JM, Plamann K (2010) Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser. J Biomed Opt 15:038003CrossRefPubMed
31.
go back to reference Nuzzo V, Plamann K, Savoldelli M, Merano M, Donate D, Albert O et al (2007) In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty. J Biomed Opt 12:064032CrossRefPubMed Nuzzo V, Plamann K, Savoldelli M, Merano M, Donate D, Albert O et al (2007) In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty. J Biomed Opt 12:064032CrossRefPubMed
32.
33.
34.
go back to reference Wu J, Seregard S, Algvere PV (2006) Photochemical damage of the retina. Surv Ophthalmol 51:461–481CrossRefPubMed Wu J, Seregard S, Algvere PV (2006) Photochemical damage of the retina. Surv Ophthalmol 51:461–481CrossRefPubMed
35.
go back to reference Zigman S, Vaughan T (1974) Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol 13:462–465PubMed Zigman S, Vaughan T (1974) Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol 13:462–465PubMed
37.
38.
go back to reference Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924CrossRef Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924CrossRef
39.
go back to reference Calhoun W, Kernik D, Beylin A, Weiblinger R, Ilev I (2013) Nonlinear optical frequency conversions of a femtosecond laser in cornea tissue, In SPIE Photonics West, San Francisco Calhoun W, Kernik D, Beylin A, Weiblinger R, Ilev I (2013) Nonlinear optical frequency conversions of a femtosecond laser in cornea tissue, In SPIE Photonics West, San Francisco
40.
go back to reference Calhoun W, Ilev IK (2014) Effect of femtosecond laser pulse energy and repetition rate on laser induced second and third harmonic generation in corneal tissue, In CLEO: Applications and Technology, p. ATh3P. 5. Calhoun W, Ilev IK (2014) Effect of femtosecond laser pulse energy and repetition rate on laser induced second and third harmonic generation in corneal tissue, In CLEO: Applications and Technology, p. ATh3P. 5.
Metadata
Title
Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue
Authors
William R. Calhoun III
Ilko K. Ilev
Publication date
01-05-2015
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 4/2015
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-015-1726-5

Other articles of this Issue 4/2015

Lasers in Medical Science 4/2015 Go to the issue