Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Effect of sex and fatigue on single leg squat kinematics in healthy young adults

Authors: Benjamin K. Weeks, Christopher P. Carty, Sean A. Horan

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

The single-leg squat (SLS) test is widely used in screening for musculoskeletal injury risk. Little is known, however, of lower limb, pelvis, and trunk kinematics of SLS performance or the effect of sex and fatigue. Our aim was to determine sex differences and the influence of fatigue on SLS kinematics in healthy young adults.

Methods

We recruited 60 healthy men and women between the ages of 20 and 40 years. Three-dimensional kinematic data was collected for SLSs with a ten-camera VICON motion analysis system (Oxford Metrics, UK) before and after a lower limb fatiguing exercise regime. One-way ANCOVA was used to make sex comparisons of kinematic parameters and repeated measures ANOVA was used to determine the effect of fatigue and the interaction with sex.

Results

30 men (25.6 ± 4.8 years) and 30 women (25.1 ± 3.8 years) volunteered to participate. Peak pelvic rotation (3.9 ± 4.1 vs. 7.7 ± 6.2 deg, P = 0.03), peak hip internal rotation (−1.8 ± 5.7 vs. 3.0 ± 7.3 deg, P = 0.02), hip adduction range (11.7 ± 4.8 vs. 18.3 ± 6.7 deg, P = 0.004), and hip rotation range (10.7 ± 3.9 vs. 13.0 ± 4.2 deg, P = 0.04) were smaller for men than for women. Likewise, distance of mediolateral knee motion (180 ± 51 vs. 227 ± 50 mm, P = 0.001) was shorter for men than for women. The kinematic response to fatigue was an increase in trunk flexion, lateral flexion and rotation, an increase in pelvic tilt, obliquity and rotation, and an increase in hip flexion and adduction range (P ≤0.05).

Conclusions

Sex differences in SLS kinematics appear to apply only at the hip, knee, and pelvis and not at the trunk. Fatiguing exercise, however, produces changes at the trunk and pelvis with little effect on the knee.
Literature
1.
go back to reference Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34:1512–32.CrossRefPubMed Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34:1512–32.CrossRefPubMed
2.
go back to reference Hewett TE, Myer GD, Ford KR, Heidt Jr RS, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.CrossRefPubMed Hewett TE, Myer GD, Ford KR, Heidt Jr RS, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.CrossRefPubMed
3.
go back to reference Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao TC. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28:98–102.PubMed Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao TC. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28:98–102.PubMed
4.
go back to reference Graci V, Van Dillen LR, Salsich GB. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture. 2012;36:461–6.CrossRefPubMedPubMedCentral Graci V, Van Dillen LR, Salsich GB. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture. 2012;36:461–6.CrossRefPubMedPubMedCentral
5.
go back to reference Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35:1745–50.CrossRefPubMed Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35:1745–50.CrossRefPubMed
6.
go back to reference Willson JD, Ireland ML, Davis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38:945–52.CrossRefPubMed Willson JD, Ireland ML, Davis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38:945–52.CrossRefPubMed
7.
go back to reference Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31:449–56.PubMed Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31:449–56.PubMed
8.
go back to reference Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 1984;7:691–9.CrossRefPubMed Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 1984;7:691–9.CrossRefPubMed
9.
go back to reference McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39:502–14.CrossRefPubMed McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39:502–14.CrossRefPubMed
10.
go back to reference McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41:1661–72.PubMed McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41:1661–72.PubMed
11.
go back to reference Webster KE, Santamaria LJ, McClelland JA, Feller JA. Effect of fatigue on landing biomechanics after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc. 2012;44:910–6.CrossRefPubMed Webster KE, Santamaria LJ, McClelland JA, Feller JA. Effect of fatigue on landing biomechanics after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc. 2012;44:910–6.CrossRefPubMed
12.
go back to reference Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22:41–50.CrossRefPubMed Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22:41–50.CrossRefPubMed
13.
go back to reference Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech (Bristol, Avon). 2008;23:203–11.CrossRef Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech (Bristol, Avon). 2008;23:203–11.CrossRef
14.
go back to reference Horan SA, Watson SL, Carty CP, Sartori M, Weeks BK. Lower limb kinematics of single leg squat performance in young adults. Physiother Can. 2014;66:228–33.CrossRefPubMedPubMedCentral Horan SA, Watson SL, Carty CP, Sartori M, Weeks BK. Lower limb kinematics of single leg squat performance in young adults. Physiother Can. 2014;66:228–33.CrossRefPubMedPubMedCentral
15.
go back to reference Weeks BK, Carty CP, Horan SA. Kinematic predictors of single-leg squat performance: a comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet Disord. 2012;13:207.CrossRefPubMedPubMedCentral Weeks BK, Carty CP, Horan SA. Kinematic predictors of single-leg squat performance: a comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet Disord. 2012;13:207.CrossRefPubMedPubMedCentral
16.
go back to reference Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39:866–73.CrossRefPubMed Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39:866–73.CrossRefPubMed
17.
18.
go back to reference Carty CP, Mills P, Barrett R. Recovery from forward loss of balance in young and older adults using the stepping strategy. Gait Posture. 2011;33:261–7.CrossRefPubMed Carty CP, Mills P, Barrett R. Recovery from forward loss of balance in young and older adults using the stepping strategy. Gait Posture. 2011;33:261–7.CrossRefPubMed
19.
go back to reference Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;43–49. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;43–49.
20.
go back to reference Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med. 2013;34:1025–8.CrossRefPubMed Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med. 2013;34:1025–8.CrossRefPubMed
21.
go back to reference Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36:1159–68.CrossRefPubMed Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36:1159–68.CrossRefPubMed
22.
go back to reference Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, et al. Validation of a functional method for the estimation of hip joint centre location. J Biomech. 1999;32:99–103.CrossRefPubMed Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, et al. Validation of a functional method for the estimation of hip joint centre location. J Biomech. 1999;32:99–103.CrossRefPubMed
23.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part I: Ankle, hip, and spine. J Biomech. 2002;35:543–8.CrossRefPubMed Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part I: Ankle, hip, and spine. J Biomech. 2002;35:543–8.CrossRefPubMed
24.
go back to reference Stokdijk M, Meskers CGM, Veeger HEJ, de Boer YA, Rozing PM. Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech. 1999;14:177–84.CrossRef Stokdijk M, Meskers CGM, Veeger HEJ, de Boer YA, Rozing PM. Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech. 1999;14:177–84.CrossRef
25.
go back to reference Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28:1257–61.CrossRefPubMed Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28:1257–61.CrossRefPubMed
26.
go back to reference Zatsiorsky VM. Kinematics of human motion. Champaign, IL: Human Kinetics; 1998. Zatsiorsky VM. Kinematics of human motion. Champaign, IL: Human Kinetics; 1998.
27.
go back to reference Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39:161–6.PubMedPubMedCentral Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39:161–6.PubMedPubMedCentral
28.
go back to reference Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37:124–9.CrossRefPubMed Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37:124–9.CrossRefPubMed
29.
go back to reference Yamazaki J, Muneta T, Ju YJ, Sekiya I. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc. 2010;18:56–63.CrossRefPubMed Yamazaki J, Muneta T, Ju YJ, Sekiya I. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc. 2010;18:56–63.CrossRefPubMed
30.
go back to reference Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41:625–32.CrossRefPubMed Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41:625–32.CrossRefPubMed
31.
go back to reference Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17:38–42.CrossRefPubMed Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17:38–42.CrossRefPubMed
32.
go back to reference Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon). 2003;18:662–9.CrossRef Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon). 2003;18:662–9.CrossRef
33.
go back to reference Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, Myers JB, et al. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc. 2008;16:400–7.CrossRefPubMed Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, Myers JB, et al. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc. 2008;16:400–7.CrossRefPubMed
34.
go back to reference Brazen DM, Todd MK, Ambegaonkar JP, Wunderlich R, Peterson C. The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med. 2010;20:286–92.CrossRefPubMed Brazen DM, Todd MK, Ambegaonkar JP, Wunderlich R, Peterson C. The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med. 2010;20:286–92.CrossRefPubMed
35.
go back to reference Gehring D, Melnyk M, Gollhofer A. Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon). 2009;24:82–7.CrossRef Gehring D, Melnyk M, Gollhofer A. Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon). 2009;24:82–7.CrossRef
36.
go back to reference Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med. 2008;36:554–65.CrossRefPubMed Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med. 2008;36:554–65.CrossRefPubMed
37.
go back to reference McNeal JR, Sands WA, Stone MH. Effects of fatigue on kinetic and kinematic variables during a 60-second repeated jumps test. Int J Sports Physiol Perform. 2010;5:218–29.CrossRefPubMed McNeal JR, Sands WA, Stone MH. Effects of fatigue on kinetic and kinematic variables during a 60-second repeated jumps test. Int J Sports Physiol Perform. 2010;5:218–29.CrossRefPubMed
38.
go back to reference Sanna G, O’Connor KM. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin Biomech (Bristol, Avon). 2008;23:946–54.CrossRef Sanna G, O’Connor KM. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin Biomech (Bristol, Avon). 2008;23:946–54.CrossRef
39.
go back to reference Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43:417–22.CrossRefPubMedPubMedCentral Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43:417–22.CrossRefPubMedPubMedCentral
40.
go back to reference Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42:491–501.CrossRefPubMed Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42:491–501.CrossRefPubMed
41.
go back to reference Pappas E, Sheikhzadeh A, Hagins M, Nordin M. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sports Sci Med. 2007;6:77–84.PubMedPubMedCentral Pappas E, Sheikhzadeh A, Hagins M, Nordin M. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sports Sci Med. 2007;6:77–84.PubMedPubMedCentral
Metadata
Title
Effect of sex and fatigue on single leg squat kinematics in healthy young adults
Authors
Benjamin K. Weeks
Christopher P. Carty
Sean A. Horan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0739-3

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue