Skip to main content
Top
Published in: Radiological Physics and Technology 2/2018

01-06-2018

Effect of region extraction and assigned mass-density values on the accuracy of dose calculation with magnetic resonance-based volumetric arc therapy planning

Authors: Keisuke Usui, Keisuke Sasai, Koichi Ogawa

Published in: Radiological Physics and Technology | Issue 2/2018

Login to get access

Abstract

This study aimed to verify the validity of generating treatment plans for volumetric arc therapy (VMAT) for prostate cancer using magnetic resonance (MR) imaging with a dose calculation algorithm in Acuros XB (Eclipse version 13.6; Varian Medical Systems, Palo Alto, CA, USA) based on deterministically solving the linear Boltzmann transport equations. Four different classes were applied to prostate MR images: MRW (all water equivalent); MRW+B (water and bone); MRS+B (soft tissue and bone); and MRS+B+G (soft tissue, bone, and rectal gas). Each of these regions was assigned a mass density for calculating doses. The assigned mass-density values were then altered in three ways. Using initial planning and optimization parameters, MR-based VMAT plans were generated and compared with corresponding forward-calculated computed tomography-based plans for doses to the target volumes and organs at risk using dose-volume histograms and γ analyses. In the MRW plans, the mean doses for TVs were overestimated by approximately 1.3%. The MRW+B plans revealed reduced differences within 0.5%. Further segmentation (MRS+B) did not result in substantial improvement. Dose deviations affected by the changes in the mass densities assigned to soft tissue were as small as approximately 1.0%, whereas larger deviations were revealed in bone and rectal gas, especially those with > 5% error. Assignment of accurate mass-density values acquired from MR images is needed for MR-based radiation treatment planning. Multiple MR sequences should be acquired for segmentation and mass-density conversion purposes. Segmented MR-based VMAT planning is feasible with a density assignment method using Acuros XB.
Literature
1.
go back to reference Barker JL Jr, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59:960–70.CrossRefPubMed Barker JL Jr, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59:960–70.CrossRefPubMed
2.
go back to reference Hong TS, Tomé WA, Chappell RJ, Chinnaiyan P, Mehta MP, Harari PM. The impact of daily setup variations on head-and-neck intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61:779–88.CrossRefPubMed Hong TS, Tomé WA, Chappell RJ, Chinnaiyan P, Mehta MP, Harari PM. The impact of daily setup variations on head-and-neck intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61:779–88.CrossRefPubMed
3.
go back to reference Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT. Image-guided radiotherapy (IGRT) for prostate cancer comparing KV imaging of fiduciary markers with cone beam computed tomography (CBCT). Int J Rad Oncol Biol Phys. 2011;80:301–5.CrossRef Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT. Image-guided radiotherapy (IGRT) for prostate cancer comparing KV imaging of fiduciary markers with cone beam computed tomography (CBCT). Int J Rad Oncol Biol Phys. 2011;80:301–5.CrossRef
4.
go back to reference Ding GX, Duggan DM, Coffey CW, Deeley M, Hallahan DE, Cmelak A, et al. A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol. 2007;85:116–25.CrossRefPubMed Ding GX, Duggan DM, Coffey CW, Deeley M, Hallahan DE, Cmelak A, et al. A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol. 2007;85:116–25.CrossRefPubMed
5.
go back to reference Menten MJ, Wetscherek A, Fast MF. MRI-guided lung SBRT: present and future developments. Phys Med. 2017;S1120–1797:30032–7. Menten MJ, Wetscherek A, Fast MF. MRI-guided lung SBRT: present and future developments. Phys Med. 2017;S1120–1797:30032–7.
6.
go back to reference Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol. 2005;15:136–45.CrossRefPubMed Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol. 2005;15:136–45.CrossRefPubMed
7.
go back to reference Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol. 2014;24:203–6.CrossRefPubMed Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol. 2014;24:203–6.CrossRefPubMed
8.
go back to reference Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, et al. A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol. 2014;24:193–5.CrossRefPubMed Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, et al. A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol. 2014;24:193–5.CrossRefPubMed
9.
go back to reference Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, et al. MR-guidance—a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol. 2014;9:12–9.CrossRefPubMedPubMedCentral Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, et al. MR-guidance—a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol. 2014;9:12–9.CrossRefPubMedPubMedCentral
10.
go back to reference Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, et al. MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009;36:2084–8.CrossRefPubMed Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, et al. MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009;36:2084–8.CrossRefPubMed
11.
go back to reference Chin AL, Lin A, Anamalayil S, Teo BK. Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J Appl Clin Med Phys. 2014;15:100–11.CrossRefPubMedCentral Chin AL, Lin A, Anamalayil S, Teo BK. Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J Appl Clin Med Phys. 2014;15:100–11.CrossRefPubMedCentral
12.
go back to reference den Dekker AJ, Sijbers J. Data distributions in magnetic resonance images: a review. Phys Med. 2014;30:725–41.CrossRef den Dekker AJ, Sijbers J. Data distributions in magnetic resonance images: a review. Phys Med. 2014;30:725–41.CrossRef
16.
go back to reference Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R. Geometric distortion in clinical MRI systems part I: evaluation using a 3D phantom. Magn Reson Imaging. 2004;22:1211–21.CrossRefPubMed Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R. Geometric distortion in clinical MRI systems part I: evaluation using a 3D phantom. Magn Reson Imaging. 2004;22:1211–21.CrossRefPubMed
17.
go back to reference Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG. Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys. 2007;34:388–99.CrossRefPubMed Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG. Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys. 2007;34:388–99.CrossRefPubMed
18.
go back to reference Chen Z, Ma CM, Paskalev K, Li J, Yang J, Richardson T, Palacio L, Xu X, Chen L. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol. 2006;51:1393–403.CrossRefPubMed Chen Z, Ma CM, Paskalev K, Li J, Yang J, Richardson T, Palacio L, Xu X, Chen L. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol. 2006;51:1393–403.CrossRefPubMed
19.
go back to reference Prott FJ, Haverkamp U, Eich H, Resch A, Micke O, Fischedick AR, Willich N, Pötter R. Effect of distortions and asymmetry in MR images on radiotherapeutic treatment planning. Int J Cancer. 2000;90:46–50.CrossRefPubMed Prott FJ, Haverkamp U, Eich H, Resch A, Micke O, Fischedick AR, Willich N, Pötter R. Effect of distortions and asymmetry in MR images on radiotherapeutic treatment planning. Int J Cancer. 2000;90:46–50.CrossRefPubMed
20.
go back to reference Crijns SP, Bakker CJ, Seevinck PR, de Leeuw H, Laqendijk JJ, Raaymakers BW. Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator. Phys Med Biol. 2012;57:1349–58.CrossRefPubMed Crijns SP, Bakker CJ, Seevinck PR, de Leeuw H, Laqendijk JJ, Raaymakers BW. Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator. Phys Med Biol. 2012;57:1349–58.CrossRefPubMed
21.
go back to reference Kapanen M, Collan J, Beule A, Seppala T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70:127–35.CrossRefPubMed Kapanen M, Collan J, Beule A, Seppala T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70:127–35.CrossRefPubMed
22.
go back to reference Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55:581–98.CrossRefPubMed Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55:581–98.CrossRefPubMed
23.
go back to reference Shirotani T. Attenuation coefficients of human tissues and tissue substitutes. Japan Atomic Energy Research. JAERI-Data/Code 95-002, INIS 26; 1995 [in Japanese]. Shirotani T. Attenuation coefficients of human tissues and tissue substitutes. Japan Atomic Energy Research. JAERI-Data/Code 95-002, INIS 26; 1995 [in Japanese].
24.
go back to reference Kapanen M, Tenhunen M. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol. 2013;52:612–8.CrossRefPubMed Kapanen M, Tenhunen M. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol. 2013;52:612–8.CrossRefPubMed
26.
go back to reference Dunlop A, McQuaid D, Nill S, Murray J, Poludniowski G, Hansen VN, et al. Comparison of CT number calibration techniques for CBCT-based dose calculation. Strahlenther Onkol. 2015;191:970–8.CrossRefPubMedPubMedCentral Dunlop A, McQuaid D, Nill S, Murray J, Poludniowski G, Hansen VN, et al. Comparison of CT number calibration techniques for CBCT-based dose calculation. Strahlenther Onkol. 2015;191:970–8.CrossRefPubMedPubMedCentral
27.
go back to reference Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberqhe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberqhe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed
28.
go back to reference Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38:2708–14.CrossRefPubMed Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38:2708–14.CrossRefPubMed
29.
go back to reference Ldiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37:745–52.CrossRef Ldiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37:745–52.CrossRef
30.
go back to reference Maspero M, Seevinck PR, Schubert G, Hoesl MA, van Asselen B, Vierqever MA, Laqendijk JJ, Meijer GJ, van den Berq CA. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT. Phys Med Biol. 2017;62:948–65.CrossRefPubMed Maspero M, Seevinck PR, Schubert G, Hoesl MA, van Asselen B, Vierqever MA, Laqendijk JJ, Meijer GJ, van den Berq CA. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT. Phys Med Biol. 2017;62:948–65.CrossRefPubMed
Metadata
Title
Effect of region extraction and assigned mass-density values on the accuracy of dose calculation with magnetic resonance-based volumetric arc therapy planning
Authors
Keisuke Usui
Keisuke Sasai
Koichi Ogawa
Publication date
01-06-2018
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 2/2018
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-0452-7

Other articles of this Issue 2/2018

Radiological Physics and Technology 2/2018 Go to the issue