Skip to main content
Top
Published in: BMC Infectious Diseases 1/2010

Open Access 01-12-2010 | Research article

Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

Authors: Simon J Shepherd, Clive B Beggs, Caroline F Smith, Kevin G Kerr, Catherine J Noakes, P Andrew Sleigh

Published in: BMC Infectious Diseases | Issue 1/2010

Login to get access

Abstract

Background

In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units.

Methods

A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter.

Results

The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the presence of the ionizer.

Conclusion

The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kerr KG, Beggs CB, Dean SG, Thornton J, Donnelly JK, Todd NJ, Sleigh PA, Qureshi A, Taylor CC: Air ionisation and colonisation/infection with methicillin-resistant Staphylococcus aureus and Acinetobacter species in an intensive care unit. Intensive Care Med. 2006, 32 (2): 315-317. 10.1007/s00134-005-0002-8.CrossRefPubMed Kerr KG, Beggs CB, Dean SG, Thornton J, Donnelly JK, Todd NJ, Sleigh PA, Qureshi A, Taylor CC: Air ionisation and colonisation/infection with methicillin-resistant Staphylococcus aureus and Acinetobacter species in an intensive care unit. Intensive Care Med. 2006, 32 (2): 315-317. 10.1007/s00134-005-0002-8.CrossRefPubMed
2.
go back to reference Noyce JO, Hughes JF: Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. J Electrostatics. 2002, 54: 179-187. 10.1016/S0304-3886(01)00179-6.CrossRef Noyce JO, Hughes JF: Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. J Electrostatics. 2002, 54: 179-187. 10.1016/S0304-3886(01)00179-6.CrossRef
3.
go back to reference Digel I, Temiz Artmann A, Nishikawa K, Artmann GM: Cluster air-ion effects on bacteria and moulds. International Symposium on Cellular Engineering and Nanosensors (part of the 38th Annual Congress on Biomedical Engineering) 21 September 2004; Ilmenau, Germany. 2004, 1040-1041. Digel I, Temiz Artmann A, Nishikawa K, Artmann GM: Cluster air-ion effects on bacteria and moulds. International Symposium on Cellular Engineering and Nanosensors (part of the 38th Annual Congress on Biomedical Engineering) 21 September 2004; Ilmenau, Germany. 2004, 1040-1041.
4.
go back to reference Shargawi JM, Theaker ED, Drucker DB, MacFarlane T, Duxbury AJ: Sensitivity of Candida albicans to negative air ion streams. J Appl Microbiol. 1999, 87 (6): 889-897. 10.1046/j.1365-2672.1999.00944.x.CrossRefPubMed Shargawi JM, Theaker ED, Drucker DB, MacFarlane T, Duxbury AJ: Sensitivity of Candida albicans to negative air ion streams. J Appl Microbiol. 1999, 87 (6): 889-897. 10.1046/j.1365-2672.1999.00944.x.CrossRefPubMed
5.
go back to reference Kellogg EW, Yost MG, Barthakur N, Kreuger AP: Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus. Nature. 1979, 281 (5730): 400-401. 10.1038/281400a0.CrossRefPubMed Kellogg EW, Yost MG, Barthakur N, Kreuger AP: Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus. Nature. 1979, 281 (5730): 400-401. 10.1038/281400a0.CrossRefPubMed
6.
go back to reference Phillips G, Harris GJ, Jones MW: Effects of air ions on bacterial aerosols. Int J Biometeorolgy. 1964, 8: 27-37. 10.1007/BF02186925.CrossRef Phillips G, Harris GJ, Jones MW: Effects of air ions on bacterial aerosols. Int J Biometeorolgy. 1964, 8: 27-37. 10.1007/BF02186925.CrossRef
7.
go back to reference Furst R: Studies on ionization effects. Annual Report. 1955, Houston: Anderson Hospital, Houston University of Texas Furst R: Studies on ionization effects. Annual Report. 1955, Houston: Anderson Hospital, Houston University of Texas
8.
go back to reference Pratt R, Barnard RW: Some effects of ionized air on Penicillium notatum. J Am Pharm Assoc Sci. 1960, 49: 643-646. 10.1002/jps.3030491004.CrossRef Pratt R, Barnard RW: Some effects of ionized air on Penicillium notatum. J Am Pharm Assoc Sci. 1960, 49: 643-646. 10.1002/jps.3030491004.CrossRef
9.
go back to reference Fletcher LA, Gaunt LF, Beggs CB, Shepherd SJ, Sleigh PA, Noakes CJ, Kerr KG: Bactericidal action of positive and negative ions in air. BMC Microbiol. 2007, 7: 32-10.1186/1471-2180-7-32.CrossRefPubMedPubMedCentral Fletcher LA, Gaunt LF, Beggs CB, Shepherd SJ, Sleigh PA, Noakes CJ, Kerr KG: Bactericidal action of positive and negative ions in air. BMC Microbiol. 2007, 7: 32-10.1186/1471-2180-7-32.CrossRefPubMedPubMedCentral
10.
go back to reference Noyce JO, Hughes JF: Bactericidal effects of negative and positive ions generated in nitrogen on starved Pseudomonas veronii. J Electrostatics. 2003, 57: 49-58. 10.1016/S0304-3886(02)00110-9.CrossRef Noyce JO, Hughes JF: Bactericidal effects of negative and positive ions generated in nitrogen on starved Pseudomonas veronii. J Electrostatics. 2003, 57: 49-58. 10.1016/S0304-3886(02)00110-9.CrossRef
11.
go back to reference Noakes C, Sleigh PA, Beggs CB: Modelling the air cleaning performance of negative air ionisers in ventilated rooms. Proceedings of the 10th international conference on air movement in rooms - Roomvent 2007: 13-15 June 2007; Helsinki. 2007, 1046-1056. Noakes C, Sleigh PA, Beggs CB: Modelling the air cleaning performance of negative air ionisers in ventilated rooms. Proceedings of the 10th international conference on air movement in rooms - Roomvent 2007: 13-15 June 2007; Helsinki. 2007, 1046-1056.
12.
go back to reference Lee BU, Yermakov M, Grinshpun SA: Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmospheric Environment. 2004, 38: 4815-4823. 10.1016/j.atmosenv.2004.06.010.CrossRef Lee BU, Yermakov M, Grinshpun SA: Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmospheric Environment. 2004, 38: 4815-4823. 10.1016/j.atmosenv.2004.06.010.CrossRef
13.
go back to reference Mayya YS, Sapra BK, Khan A, Sunny F: Aerosol removal by unipolar ionization in indoor environments. Journal of Aerosol Science. 2004, 35: 923-941. 10.1016/j.jaerosci.2004.03.001.CrossRef Mayya YS, Sapra BK, Khan A, Sunny F: Aerosol removal by unipolar ionization in indoor environments. Journal of Aerosol Science. 2004, 35: 923-941. 10.1016/j.jaerosci.2004.03.001.CrossRef
14.
go back to reference Grabarczyk Z: Effectiveness of indoor air cleaning with corona ionizers. Journal of Electrostatics. 2001, 51-52: 278-283. 10.1016/S0304-3886(01)00058-4.CrossRef Grabarczyk Z: Effectiveness of indoor air cleaning with corona ionizers. Journal of Electrostatics. 2001, 51-52: 278-283. 10.1016/S0304-3886(01)00058-4.CrossRef
15.
go back to reference Roberts K, Hathway A, Fletcher LA, Beggs CB, Elliott MW, Sleigh PA: Bioaerosol production on a respiratory ward. Indoor and Built Environment. 2006, 15 (1): 35-40. 10.1177/1420326X06062562.CrossRef Roberts K, Hathway A, Fletcher LA, Beggs CB, Elliott MW, Sleigh PA: Bioaerosol production on a respiratory ward. Indoor and Built Environment. 2006, 15 (1): 35-40. 10.1177/1420326X06062562.CrossRef
16.
go back to reference Beggs CB, Kerr KG, Noakes CJ, Hathway EA, Sleigh PA: The ventilation of multiple-bed hospital wards: review and analysis. Am J Infect Control. 2008, 36 (4): 250-259. 10.1016/j.ajic.2007.07.012.CrossRefPubMed Beggs CB, Kerr KG, Noakes CJ, Hathway EA, Sleigh PA: The ventilation of multiple-bed hospital wards: review and analysis. Am J Infect Control. 2008, 36 (4): 250-259. 10.1016/j.ajic.2007.07.012.CrossRefPubMed
17.
go back to reference Allen KD, Green HT: Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread?. J Hosp Infect. 1987, 9 (2): 110-119. 10.1016/0195-6701(87)90048-X.CrossRefPubMed Allen KD, Green HT: Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread?. J Hosp Infect. 1987, 9 (2): 110-119. 10.1016/0195-6701(87)90048-X.CrossRefPubMed
18.
go back to reference Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T: Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect. 2002, 50 (2): 110-114. 10.1053/jhin.2001.1127.CrossRefPubMed Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T: Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect. 2002, 50 (2): 110-114. 10.1053/jhin.2001.1127.CrossRefPubMed
19.
go back to reference Weernink A, Severin WP, Tjernberg I, Dijkshoorn L: Pillows, an unexpected source of Acinetobacter. J Hosp Infect. 1995, 29 (3): 189-199. 10.1016/0195-6701(95)90328-3.CrossRefPubMed Weernink A, Severin WP, Tjernberg I, Dijkshoorn L: Pillows, an unexpected source of Acinetobacter. J Hosp Infect. 1995, 29 (3): 189-199. 10.1016/0195-6701(95)90328-3.CrossRefPubMed
20.
go back to reference Allen JE, Close JJ, Henshaw DL: Static electric fields as a mediator of hospital infection. Indoor and Built Environment. 2006, 15 (1): 49-52. 10.1177/1420326X06061502.CrossRef Allen JE, Close JJ, Henshaw DL: Static electric fields as a mediator of hospital infection. Indoor and Built Environment. 2006, 15 (1): 49-52. 10.1177/1420326X06061502.CrossRef
21.
go back to reference Houang ET, Chu YW, Leung CM, Chu KY, Berlau J, Ng KC, Cheng AF: Epidemiology and infection control implications of Acinetobacter spp. in Hong Kong. J Clin Microbiol. 2001, 39 (1): 228-234. 10.1128/JCM.39.1.228-234.2001.CrossRefPubMedPubMedCentral Houang ET, Chu YW, Leung CM, Chu KY, Berlau J, Ng KC, Cheng AF: Epidemiology and infection control implications of Acinetobacter spp. in Hong Kong. J Clin Microbiol. 2001, 39 (1): 228-234. 10.1128/JCM.39.1.228-234.2001.CrossRefPubMedPubMedCentral
22.
go back to reference Gerner-Smidt P: Endemic occurrence of Acinetobacter calcoaceticus biovar anitratus in an intensive care unit. J Hosp Infect. 1987, 10 (3): 265-272. 10.1016/0195-6701(87)90008-9.CrossRefPubMed Gerner-Smidt P: Endemic occurrence of Acinetobacter calcoaceticus biovar anitratus in an intensive care unit. J Hosp Infect. 1987, 10 (3): 265-272. 10.1016/0195-6701(87)90008-9.CrossRefPubMed
23.
go back to reference Thornton T, Fletcher LA, Beggs CB, Elliott MW, Kerr KG: Airborne microflora in a respiratory ward. ASHRAE IAQ Conference: 15 - 17th March 2004; Tampa, Florida: ASHRAE. 2004 Thornton T, Fletcher LA, Beggs CB, Elliott MW, Kerr KG: Airborne microflora in a respiratory ward. ASHRAE IAQ Conference: 15 - 17th March 2004; Tampa, Florida: ASHRAE. 2004
24.
go back to reference Obbard JP, Fang LS: Airborne concentrations of bacteria in a hospital environment in Singapore. Water, Air, and Soil Pollution. 2003, 144: 333-341. 10.1023/A:1022973402453.CrossRef Obbard JP, Fang LS: Airborne concentrations of bacteria in a hospital environment in Singapore. Water, Air, and Soil Pollution. 2003, 144: 333-341. 10.1023/A:1022973402453.CrossRef
25.
go back to reference Ayliffe GAJ, Babb JR, Taylor LJ: Hospital-acquired infection - principles and prevention. 1999, London, Butterworth-Heinemann Ayliffe GAJ, Babb JR, Taylor LJ: Hospital-acquired infection - principles and prevention. 1999, London, Butterworth-Heinemann
26.
go back to reference May KR, Pomeroy NP: Bacterial dispersion from the body surface. Airborne transmission and airborne infection. Edited by: Hers JF, Winkler KC. 1973, Utrecht: Oosthoek Publishing Company May KR, Pomeroy NP: Bacterial dispersion from the body surface. Airborne transmission and airborne infection. Edited by: Hers JF, Winkler KC. 1973, Utrecht: Oosthoek Publishing Company
27.
go back to reference Willeke K, Mainelis G, Grinshpun SA, Reponen T, Baron P: Measurement of electrical charges on airborne microorganisms. Journal of Aerosol Science. 2000, 31 (Suppl 1): S957-S958. 10.1016/S0021-8502(00)90967-4.CrossRef Willeke K, Mainelis G, Grinshpun SA, Reponen T, Baron P: Measurement of electrical charges on airborne microorganisms. Journal of Aerosol Science. 2000, 31 (Suppl 1): S957-S958. 10.1016/S0021-8502(00)90967-4.CrossRef
28.
go back to reference Mainelis G, Willeke K, Baron P, Reonen T, Grinshpun SA, Gorny RL, Trakumas S: Electric charges on airborne microorganisms. Journal of Aerosol Science. 2001, 32: 1087-1110. 10.1016/S0021-8502(01)00039-8.CrossRef Mainelis G, Willeke K, Baron P, Reonen T, Grinshpun SA, Gorny RL, Trakumas S: Electric charges on airborne microorganisms. Journal of Aerosol Science. 2001, 32: 1087-1110. 10.1016/S0021-8502(01)00039-8.CrossRef
29.
go back to reference Sherbet GV, Lakshmi MS: Characterisation of Escherichia coli cell surface by isoelectric equilibrium analysis. Biochim Biophys Acta. 1973, 298 (1): 50-58. 10.1016/0005-2736(73)90008-4.CrossRefPubMed Sherbet GV, Lakshmi MS: Characterisation of Escherichia coli cell surface by isoelectric equilibrium analysis. Biochim Biophys Acta. 1973, 298 (1): 50-58. 10.1016/0005-2736(73)90008-4.CrossRefPubMed
30.
go back to reference Fletcher LA, Noakes CJ, Sleigh PA, Beggs CB, Shepherd SJ: Air ion behavior in ventilated rooms. Indoor and Built Environment. 2008, 17: 173-182. 10.1177/1420326X08089622.CrossRef Fletcher LA, Noakes CJ, Sleigh PA, Beggs CB, Shepherd SJ: Air ion behavior in ventilated rooms. Indoor and Built Environment. 2008, 17: 173-182. 10.1177/1420326X08089622.CrossRef
31.
go back to reference Craven DE, Lichtenberg DA, Goularte TA, Make BJ, McCabe WR: Contaminated medication nebulizers in mechanical ventilator circuits. Source of bacterial aerosols. Am J Med. 1984, 77 (5): 834-838. 10.1016/0002-9343(84)90520-5.CrossRefPubMed Craven DE, Lichtenberg DA, Goularte TA, Make BJ, McCabe WR: Contaminated medication nebulizers in mechanical ventilator circuits. Source of bacterial aerosols. Am J Med. 1984, 77 (5): 834-838. 10.1016/0002-9343(84)90520-5.CrossRefPubMed
32.
go back to reference Cefai C, Richards J, Gould FK, McPeake P: An outbreak of Acinetobacter respiratory tract infection resulting from incomplete disinfection of ventilatory equipment. J Hosp Infect. 1990, 15 (2): 177-182. 10.1016/0195-6701(90)90128-B.CrossRefPubMed Cefai C, Richards J, Gould FK, McPeake P: An outbreak of Acinetobacter respiratory tract infection resulting from incomplete disinfection of ventilatory equipment. J Hosp Infect. 1990, 15 (2): 177-182. 10.1016/0195-6701(90)90128-B.CrossRefPubMed
33.
go back to reference Dealler S: Nosocomial outbreak of multi-resistant Acinetobacter sp. on an intensive care unit: possible association with ventilation equipment. J Hosp Infect. 1998, 38 (2): 147-148. 10.1016/S0195-6701(98)90068-8.CrossRefPubMed Dealler S: Nosocomial outbreak of multi-resistant Acinetobacter sp. on an intensive care unit: possible association with ventilation equipment. J Hosp Infect. 1998, 38 (2): 147-148. 10.1016/S0195-6701(98)90068-8.CrossRefPubMed
34.
go back to reference Davies DK: Charge generation on dielectric surfaces. J Phys D: Appl Phys. 1969, 2: 1533-1537. 10.1088/0022-3727/2/11/307.CrossRef Davies DK: Charge generation on dielectric surfaces. J Phys D: Appl Phys. 1969, 2: 1533-1537. 10.1088/0022-3727/2/11/307.CrossRef
35.
go back to reference Diaz AF, Felix-Navarro RM: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. Journal of Electrostatics. 2004, 62 (4): 277-290. 10.1016/j.elstat.2004.05.005.CrossRef Diaz AF, Felix-Navarro RM: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. Journal of Electrostatics. 2004, 62 (4): 277-290. 10.1016/j.elstat.2004.05.005.CrossRef
36.
go back to reference Xu Z, Zhang L, Chen G: 2007 International Conference on Solid Dielectrics. July 8-13 2007; Winchester, UK. 2007 Xu Z, Zhang L, Chen G: 2007 International Conference on Solid Dielectrics. July 8-13 2007; Winchester, UK. 2007
37.
go back to reference Tsai P, Schreuder-Gibson HL: Fiber charging effects on target coverage in electrospinning. INTC2003, International Nonwovens Technical Conference: 15-18 September 2003; Baltimore, USA. 2003, 403-413. Tsai P, Schreuder-Gibson HL: Fiber charging effects on target coverage in electrospinning. INTC2003, International Nonwovens Technical Conference: 15-18 September 2003; Baltimore, USA. 2003, 403-413.
38.
go back to reference Chubb JN: Corona charging of practical materials for charge decay measurements. Journal of Electrostatics. 1996, 37 (1): 53-65. 10.1016/0304-3886(95)00059-3.CrossRef Chubb JN: Corona charging of practical materials for charge decay measurements. Journal of Electrostatics. 1996, 37 (1): 53-65. 10.1016/0304-3886(95)00059-3.CrossRef
Metadata
Title
Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment
Authors
Simon J Shepherd
Clive B Beggs
Caroline F Smith
Kevin G Kerr
Catherine J Noakes
P Andrew Sleigh
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2010
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-10-92

Other articles of this Issue 1/2010

BMC Infectious Diseases 1/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.