Skip to main content
Top
Published in: European Spine Journal 11/2014

01-11-2014 | Original Article

Effect of lordosis angle change after lumbar/lumbosacral fusion on sacrum angular displacement: a finite element study

Authors: Ningfang Mao, Jian Shi, Dawei He, Yang Xie, Yushu Bai, Xianzhao Wei, Zhicai Shi, Ming Li

Published in: European Spine Journal | Issue 11/2014

Login to get access

Abstract

Purpose

To assess and characterize the sacrum angular displacements in response to lumbar lordosis after lumbar/lumbosacral fusion.

Methods

A finite element model of the lower lumbar spine-pelvis was established and used to simulate the posterior fusion at L3–L5 and L4–S1. The lordosis angle in the fusion segments was set to five different conditions with respect to the intact model: 10° less than intact, 5° less than intact, same as intact, 5° more than intact, and 10° more than intact. Variations of the sacrum angular displacements with lordosis changes were analyzed under loading setting of axial compression, flexion, extension, lateral bending, and axial rotation.

Results

Compared with the intact lordosis, both increased and decreased lumbar lordosis angles caused the sacrum angular displacements to be increased. The lordosis angle increased by 10° induced the most substantial increase in sacrum angular displacements. In addition, the sacrum angular displacements of the L4–S1 fusion model at different lordosis angles were higher than those of the L3–L5 fusion model.

Conclusion

The sacrum angular displacements occur as a result of the fusion surgery (L4–S1) and the changes in lumbar lordosis.
Literature
2.
go back to reference Ha K-Y, Lee J-S, Kim K-W (2008) Degeneration of sacroiliac joint after instrumented lumbar or lumbosacral fusion: a prospective cohort study over five-year follow-up. Spine 33(11):1192–1198PubMedCrossRef Ha K-Y, Lee J-S, Kim K-W (2008) Degeneration of sacroiliac joint after instrumented lumbar or lumbosacral fusion: a prospective cohort study over five-year follow-up. Spine 33(11):1192–1198PubMedCrossRef
3.
go back to reference Ivanov AA, Kiapour A, Ebraheim NA, Goel V (2009) Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine 34(5):E162–E169PubMedCrossRef Ivanov AA, Kiapour A, Ebraheim NA, Goel V (2009) Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine 34(5):E162–E169PubMedCrossRef
4.
go back to reference Peterson MD, Nelson LM, McManus AC, Jackson RP (1995) The effect of operative position on lumbar lordosis: a radiographic study of patients under anesthesia in the prone and 90-90 positions. Spine 20(12):1419–1424PubMed Peterson MD, Nelson LM, McManus AC, Jackson RP (1995) The effect of operative position on lumbar lordosis: a radiographic study of patients under anesthesia in the prone and 90-90 positions. Spine 20(12):1419–1424PubMed
5.
go back to reference Gödde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28(15):1693–1699PubMed Gödde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28(15):1693–1699PubMed
6.
go back to reference Keorochana G, Taghavi CE, Lee K-B, Yoo JH, Liao J-C, Fei Z, Wang JC (2011) Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine 36(11):893PubMedCrossRef Keorochana G, Taghavi CE, Lee K-B, Yoo JH, Liao J-C, Fei Z, Wang JC (2011) Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine 36(11):893PubMedCrossRef
7.
go back to reference Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25(13):1617–1624PubMedCrossRef Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25(13):1617–1624PubMedCrossRef
8.
go back to reference Ivanov A, Kiapour A, Ebraheim N, Goel V (2007) Finite element modeling and analysis of human pelvis. In: Conference of Bioengineering Division of American Society of Mechanical Engineering Ivanov A, Kiapour A, Ebraheim N, Goel V (2007) Finite element modeling and analysis of human pelvis. In: Conference of Bioengineering Division of American Society of Mechanical Engineering
9.
go back to reference Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R (2005) Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30(24):2755PubMedCrossRef Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R (2005) Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30(24):2755PubMedCrossRef
10.
go back to reference Weisl H (1954) The ligaments of the sacro-iliac joint examined with particular reference to their function. Cells Tissues Organs 20(3):201–213 Weisl H (1954) The ligaments of the sacro-iliac joint examined with particular reference to their function. Cells Tissues Organs 20(3):201–213
11.
go back to reference Eichenseer PH, Sybert DR, Cotton JR (2011) A finite element analysis of sacroiliac joint ligaments in response to different loading conditions. Spine 36(22):E1446–E1452PubMedCrossRef Eichenseer PH, Sybert DR, Cotton JR (2011) A finite element analysis of sacroiliac joint ligaments in response to different loading conditions. Spine 36(22):E1446–E1452PubMedCrossRef
12.
go back to reference Dalstra M, Huiskes R, Van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117(3):272PubMedCrossRef Dalstra M, Huiskes R, Van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117(3):272PubMedCrossRef
13.
go back to reference Goel V, Monroe B, Gilbertson L, Brinckmann P (1995) Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine 20(6):689–698PubMedCrossRef Goel V, Monroe B, Gilbertson L, Brinckmann P (1995) Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine 20(6):689–698PubMedCrossRef
14.
go back to reference Goel VK, Ramirez SA, Kong W, Gilbertson LG (1995) Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine–application of bone adaptive remodeling concepts. J Biomech Eng 117(3):266PubMedCrossRef Goel VK, Ramirez SA, Kong W, Gilbertson LG (1995) Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine–application of bone adaptive remodeling concepts. J Biomech Eng 117(3):266PubMedCrossRef
15.
go back to reference Chen C-S, Cheng C-K, Liu C-L (2002) A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech 15(1):53–63PubMedCrossRef Chen C-S, Cheng C-K, Liu C-L (2002) A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech 15(1):53–63PubMedCrossRef
16.
go back to reference Miller JA, Schultz AB, Andersson GB (1987) Load-displacement behavior of sacroiliac joints. J Orthop Res 5(1):92–101PubMedCrossRef Miller JA, Schultz AB, Andersson GB (1987) Load-displacement behavior of sacroiliac joints. J Orthop Res 5(1):92–101PubMedCrossRef
17.
go back to reference Garcia J, Doblare M, Seral B, Seral F, Palanca D, Gracia L (2000) Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng 122(5):516–522PubMedCrossRef Garcia J, Doblare M, Seral B, Seral F, Palanca D, Gracia L (2000) Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng 122(5):516–522PubMedCrossRef
18.
go back to reference Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(5):626–633PubMedCrossRefPubMedCentral Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(5):626–633PubMedCrossRefPubMedCentral
19.
go back to reference Barrey C, Roussouly P, Le Huec J-C, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(6):834–841 Barrey C, Roussouly P, Le Huec J-C, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(6):834–841
20.
go back to reference Jang J-S, Lee S-H, Min J-H, Maeng DH (2007) Changes in sagittal alignment after restoration of lower lumbar lordosis in patients with degenerative flat back syndrome. J Neurosurg Spine 7(4):387–392PubMedCrossRef Jang J-S, Lee S-H, Min J-H, Maeng DH (2007) Changes in sagittal alignment after restoration of lower lumbar lordosis in patients with degenerative flat back syndrome. J Neurosurg Spine 7(4):387–392PubMedCrossRef
21.
go back to reference Akamaru T, Kawahara N, Yoon ST, Minamide A, Kim KS, Tomita K, Hutton WC (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine 28(14):1560–1566PubMed Akamaru T, Kawahara N, Yoon ST, Minamide A, Kim KS, Tomita K, Hutton WC (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine 28(14):1560–1566PubMed
22.
go back to reference Untch C, Liu Q, Hart R (2004) Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Spine 29(21):2376–2381PubMedCrossRef Untch C, Liu Q, Hart R (2004) Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Spine 29(21):2376–2381PubMedCrossRef
Metadata
Title
Effect of lordosis angle change after lumbar/lumbosacral fusion on sacrum angular displacement: a finite element study
Authors
Ningfang Mao
Jian Shi
Dawei He
Yang Xie
Yushu Bai
Xianzhao Wei
Zhicai Shi
Ming Li
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 11/2014
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-014-3569-3

Other articles of this Issue 11/2014

European Spine Journal 11/2014 Go to the issue