Skip to main content
Top
Published in: European Journal of Nutrition 7/2019

01-10-2019 | Original Contribution

Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice

Authors: Yueting Ge, Wei Liu, Haiteng Tao, Yu Zhang, Lina Liu, Zhenhua Liu, Bin Qiu, Tongcheng Xu

Published in: European Journal of Nutrition | Issue 7/2019

Login to get access

Abstract

Purpose

Previous studies have shown that industrially originated trans-fatty acids (iTFAs) are associated with several chronic diseases, but the underlying mechanisms remain unknown. Because gut microbiota play a critical role in human health, diet competent induced gut microbiota dysbiosis may contributing to disease pathogenesis. Therefore, the present study examined the impact of iTFA on gut microbiota, help understanding the underling mechanism of iTFA-associated chronic diseases.

Methods

Forty male 8-week-old mice were divided into 4 groups and randomly assigned to diets containing soybean oil (non-iTFA) or partially hydrogenated soybean oil (iTFA). The intervention groups were: (1) low soybean oil (LS); (2) high soybean oil (HS); (3) low partially hydrogenated oil (LH) and (4) high partially hydrogenated oil (HH). The gut microbiota profiles were determined by 16S rRNA gene sequencing. Physiological parameters and the inflammatory status of the small intestine and other tissues were analyzed. Short-chain fatty acid levels in feces were measured using gas chromatography.

Results

The intake of iTFA increased the abundance of well-documented ‘harmful’ bacteria, such as Proteobacteria and Desulfovibrionaceae (P < 0.05), whereas it decreased relative abundance of ‘beneficial’ bacteria, such as Bacteroidetes, Lachnospiraceae, Bacteroidales S24-7 (P < 0.05). Surprisingly, the intake of iTFA increased the abundance of the probiotic Lactobacillaceae (P < 0.05). Additionally, the intake of iTFA induced increase of inflammatory parameters, as well as a numerical decrease of fecal butyric acid and valeric acid.

Conclusions

This study, to our knowledge, is the first to demonstrate that the consumption of iTFA resulted in a significant dysbiosis of gut microbiota, which may contribute to the development of chronic diseases associated with iTFA.
Appendix
Available only for authorised users
Literature
6.
go back to reference Macfarlane GT, Blackett KL, Nakayama T, Steed H, Macfarlane S (2009) The gut microbiota in inflammatory bowel disease. Curr Pharm Des 15(13):1528–1536CrossRefPubMed Macfarlane GT, Blackett KL, Nakayama T, Steed H, Macfarlane S (2009) The gut microbiota in inflammatory bowel disease. Curr Pharm Des 15(13):1528–1536CrossRefPubMed
15.
40.
go back to reference Endo Y, Kamisada S, Fujimoto K, Saito T (2006) Trans fatty acids promote the growth of some Lactobacillus strains. J Gen Appl Microbiol 52(1):29–35CrossRefPubMed Endo Y, Kamisada S, Fujimoto K, Saito T (2006) Trans fatty acids promote the growth of some Lactobacillus strains. J Gen Appl Microbiol 52(1):29–35CrossRefPubMed
42.
46.
go back to reference Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis C, Gnani D, Furlanello C, Zandona A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L (2017) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65(2):451–464. https://doi.org/10.1002/hep.28572 CrossRefPubMed Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis C, Gnani D, Furlanello C, Zandona A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L (2017) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65(2):451–464. https://​doi.​org/​10.​1002/​hep.​28572 CrossRefPubMed
50.
53.
go back to reference Chajes V, Biessy C, Ferrari P, Romieu I, Freisling H, Huybrechts I, Scalbert A, Bueno de Mesquita B, Romaguera D, Gunter MJ, Vineis P, Hansen CP, Jakobsen MU, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke V, Neamat-Allah J, Boeing H, Bachlechner U, Trichopoulou A, Naska A, Orfanos P, Pala V, Masala G, Mattiello A, Skeie G, Weiderpass E, Agudo A, Huerta JM, Ardanaz E, Sanchez MJ, Dorronsoro M, Quiros JR, Johansson I, Winkvist A, Sonested E, Key T, Khaw KT, Wareham NJ, Peeters PH, Slimani N (2015) Plasma elaidic acid level as biomarker of industrial trans fatty acids and risk of weight change: report from the EPIC study. PLoS One 10(2):e0118206. https://doi.org/10.1371/journal.pone.0118206 CrossRefPubMedPubMedCentral Chajes V, Biessy C, Ferrari P, Romieu I, Freisling H, Huybrechts I, Scalbert A, Bueno de Mesquita B, Romaguera D, Gunter MJ, Vineis P, Hansen CP, Jakobsen MU, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke V, Neamat-Allah J, Boeing H, Bachlechner U, Trichopoulou A, Naska A, Orfanos P, Pala V, Masala G, Mattiello A, Skeie G, Weiderpass E, Agudo A, Huerta JM, Ardanaz E, Sanchez MJ, Dorronsoro M, Quiros JR, Johansson I, Winkvist A, Sonested E, Key T, Khaw KT, Wareham NJ, Peeters PH, Slimani N (2015) Plasma elaidic acid level as biomarker of industrial trans fatty acids and risk of weight change: report from the EPIC study. PLoS One 10(2):e0118206. https://​doi.​org/​10.​1371/​journal.​pone.​0118206 CrossRefPubMedPubMedCentral
Metadata
Title
Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice
Authors
Yueting Ge
Wei Liu
Haiteng Tao
Yu Zhang
Lina Liu
Zhenhua Liu
Bin Qiu
Tongcheng Xu
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 7/2019
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-018-1810-2

Other articles of this Issue 7/2019

European Journal of Nutrition 7/2019 Go to the issue