Skip to main content
Top
Published in: BMC Infectious Diseases 1/2014

Open Access 01-12-2014 | Research article

Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis

Authors: Zhuyang Han, Gin Nam Sze To, Sau Chung Fu, Christopher Yu-Hang Chao, Wenguo Weng, Quanyi Huang

Published in: BMC Infectious Diseases | Issue 1/2014

Login to get access

Abstract

Background

Airborne transmission of respiratory infectious disease in indoor environment (e.g. airplane cabin, conference room, hospital, isolated room and inpatient ward) may cause outbreaks of infectious diseases, which may lead to many infection cases and significantly influences on the public health. This issue has received more and more attentions from academics. This work investigates the influence of human movement on the airborne transmission of respiratory infectious diseases in an airplane cabin by using an accurate human model in numerical simulation and comparing the influences of different human movement behaviors on disease transmission.

Methods

The Eulerian–Lagrangian approach is adopted to simulate the dispersion and deposition of the expiratory aerosols. The dose–response model is used to assess the infection risks of the occupants. The likelihood analysis is performed as a hypothesis test on the input parameters and different human movement pattern assumptions. An in-flight SARS outbreak case is used for investigation. A moving person with different moving speeds is simulated to represent the movement behaviors. A digital human model was used to represent the detailed profile of the occupants, which was obtained by scanning a real thermal manikin using the 3D laser scanning system.

Results

The analysis results indicate that human movement can strengthen the downward transport of the aerosols, significantly reduce the overall deposition and removal rate of the suspended aerosols and increase the average infection risk in the cabin. The likelihood estimation result shows that the risk assessment results better fit the outcome of the outbreak case when the movements of the seated passengers are considered. The intake fraction of the moving person is significantly higher than most of the seated passengers.

Conclusions

The infection risk distribution in the airplane cabin highly depends on the movement behaviors of the passengers and the index patient. The walking activities of the crew members and the seated passengers can significantly increase their personal infection risks. Taking the influence of the movement of the seated passengers and the index patient into consideration is necessary and important. For future studies, investigations on the behaviors characteristics of the passengers during flight will be useful and helpful for infection control.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization: International Travel and Health; Chapter 5. 2007, Switzerland: The WHO press World Health Organization: International Travel and Health; Chapter 5. 2007, Switzerland: The WHO press
2.
go back to reference World Health Organization: The World Health Report; Statistical Annex. 2004, Switzerland: The WHO press World Health Organization: The World Health Report; Statistical Annex. 2004, Switzerland: The WHO press
3.
go back to reference Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG: An outbreak of influenza aboard a commercial airliner. Am J Hyg. 1979, 110 (1): 1-6. Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG: An outbreak of influenza aboard a commercial airliner. Am J Hyg. 1979, 110 (1): 1-6.
4.
go back to reference Kenyon TA, Valway SE, Ihle WW, Onorato IM, Castro KG: Transmission of multidrug-resistant mycobacterium tuberculosis during a long airplane flight. N Engl J Med. 1996, 334 (15): 933-938.CrossRefPubMed Kenyon TA, Valway SE, Ihle WW, Onorato IM, Castro KG: Transmission of multidrug-resistant mycobacterium tuberculosis during a long airplane flight. N Engl J Med. 1996, 334 (15): 933-938.CrossRefPubMed
5.
go back to reference Olsen SJ, Chang H-L, Cheung TY-Y, Tang AF-Y, Fisk TL, Ooi SP-L, Kuo H-W, Jiang DD-S, Chen K-T, Lando J, Hsu K-H, Chen T-J, Dowell SF: Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003, 349 (25): 2416-2422.CrossRefPubMed Olsen SJ, Chang H-L, Cheung TY-Y, Tang AF-Y, Fisk TL, Ooi SP-L, Kuo H-W, Jiang DD-S, Chen K-T, Lando J, Hsu K-H, Chen T-J, Dowell SF: Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003, 349 (25): 2416-2422.CrossRefPubMed
6.
go back to reference Mangili A, Gendreau MA: Transmission of infectious diseases during commercial air travel. Lancet. 2005, 365 (9463): 989-996.CrossRefPubMed Mangili A, Gendreau MA: Transmission of infectious diseases during commercial air travel. Lancet. 2005, 365 (9463): 989-996.CrossRefPubMed
7.
go back to reference DeHart RL: Health issues of air travel. Annu Rev Publ Health. 2003, 24: 133-151.CrossRef DeHart RL: Health issues of air travel. Annu Rev Publ Health. 2003, 24: 133-151.CrossRef
8.
go back to reference Mazumdar S, Poussou SB, Lin CH, Isukapalli SS, Plesniak MW, Chen QY: Impact of scaling and body movement on contaminant transport in airliner cabins. Atmos Environ. 2011, 45 (33): 6019-6028.CrossRef Mazumdar S, Poussou SB, Lin CH, Isukapalli SS, Plesniak MW, Chen QY: Impact of scaling and body movement on contaminant transport in airliner cabins. Atmos Environ. 2011, 45 (33): 6019-6028.CrossRef
9.
go back to reference Edge BA, Paterson EG, Settles GS: Computational study of the wake and contaminant transport of a walking human. J Fluids Eng. 2005, 127: 967-977.CrossRef Edge BA, Paterson EG, Settles GS: Computational study of the wake and contaminant transport of a walking human. J Fluids Eng. 2005, 127: 967-977.CrossRef
10.
go back to reference Matsumoto H, Ohba Y: The influence of a moving object on air distribution in displacement ventilated rooms. J Asian Archit Build Eng. 2004, 3 (1): 71-75.CrossRef Matsumoto H, Ohba Y: The influence of a moving object on air distribution in displacement ventilated rooms. J Asian Archit Build Eng. 2004, 3 (1): 71-75.CrossRef
11.
go back to reference Poussou SB, Mazumdar S, Plesniak MW, Sojka PE, Chen QY: Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions. Atmos Environ. 2010, 44 (24): 2830-2839.CrossRef Poussou SB, Mazumdar S, Plesniak MW, Sojka PE, Chen QY: Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions. Atmos Environ. 2010, 44 (24): 2830-2839.CrossRef
12.
go back to reference Bjorn E, Nielsen PV: Dispersal of exhaled air and personal exposure in displacement ventilated rooms. Indoor Air. 2002, 12 (3): 147-164.CrossRefPubMed Bjorn E, Nielsen PV: Dispersal of exhaled air and personal exposure in displacement ventilated rooms. Indoor Air. 2002, 12 (3): 147-164.CrossRefPubMed
13.
go back to reference Shih YC, Chiu CC, Wang O: Dynamic airflow simulation within an isolation room. Build Environ. 2007, 42 (9): 3194-3209.CrossRef Shih YC, Chiu CC, Wang O: Dynamic airflow simulation within an isolation room. Build Environ. 2007, 42 (9): 3194-3209.CrossRef
14.
go back to reference Mazumdar S, Yin YG, Guity A, Marmion P, Gulick B, Chen QY: Impact of moving objects on contaminant concentration distributions in an inpatient ward with displacement ventilation. Hvac&r Res. 2010, 16 (5): 545-563.CrossRef Mazumdar S, Yin YG, Guity A, Marmion P, Gulick B, Chen QY: Impact of moving objects on contaminant concentration distributions in an inpatient ward with displacement ventilation. Hvac&r Res. 2010, 16 (5): 545-563.CrossRef
15.
go back to reference Choi JI, Edwards JR: Large eddy simulation and zonal modeling of human-induced contaminant transport. Indoor Air. 2008, 18 (3): 233-249.CrossRefPubMed Choi JI, Edwards JR: Large eddy simulation and zonal modeling of human-induced contaminant transport. Indoor Air. 2008, 18 (3): 233-249.CrossRefPubMed
16.
go back to reference Choi JI, Edwards JR: Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor Air. 2012, 22 (1): 77-87.CrossRefPubMed Choi JI, Edwards JR: Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor Air. 2012, 22 (1): 77-87.CrossRefPubMed
17.
go back to reference Wang J, Chow T-T: Numerical investigation of influence of human walking on dispersion and deposition of expiratory droplets in airborne infection isolation room. Build Environ. 2011, 46 (10): 1993-2002.CrossRef Wang J, Chow T-T: Numerical investigation of influence of human walking on dispersion and deposition of expiratory droplets in airborne infection isolation room. Build Environ. 2011, 46 (10): 1993-2002.CrossRef
18.
go back to reference Yin S, Sze-To GN, Chao CYH: Retrospective analysis of multi-drug resistant tuberculosis outbreak during a flight using computational fluid dynamics and infection risk assessment. Build Environ. 2012, 47: 50-57.CrossRef Yin S, Sze-To GN, Chao CYH: Retrospective analysis of multi-drug resistant tuberculosis outbreak during a flight using computational fluid dynamics and infection risk assessment. Build Environ. 2012, 47: 50-57.CrossRef
19.
go back to reference Gupta JK, Lin CH, Chen QY: Transport of expiratory droplets in an aircraft cabin. Indoor Air. 2011, 21 (1): 3-11.CrossRefPubMed Gupta JK, Lin CH, Chen QY: Transport of expiratory droplets in an aircraft cabin. Indoor Air. 2011, 21 (1): 3-11.CrossRefPubMed
20.
go back to reference Zhang Z, Chen Q: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ. 2007, 41 (25): 5236-5248.CrossRef Zhang Z, Chen Q: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ. 2007, 41 (25): 5236-5248.CrossRef
21.
go back to reference Roache PJ: Verification of codes and calculations. AIAA J. 1998, 36 (5): 696-702.CrossRef Roache PJ: Verification of codes and calculations. AIAA J. 1998, 36 (5): 696-702.CrossRef
22.
go back to reference Wan MP, To GNS, Chao CYH, Fang L, Melikov A: Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol Sci Technol. 2009, 43 (4): 322-343.CrossRef Wan MP, To GNS, Chao CYH, Fang L, Melikov A: Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol Sci Technol. 2009, 43 (4): 322-343.CrossRef
23.
go back to reference Chao CYH, Wan MP: A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air. 2006, 16 (4): 296-312.CrossRefPubMed Chao CYH, Wan MP: A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air. 2006, 16 (4): 296-312.CrossRefPubMed
24.
go back to reference Chao CYH, Wan MP, Sze To GN: Transport and removal of expiratory droplets in hospital ward environment. Aerosol Sci Technol. 2008, 42 (5): 377-394.CrossRef Chao CYH, Wan MP, Sze To GN: Transport and removal of expiratory droplets in hospital ward environment. Aerosol Sci Technol. 2008, 42 (5): 377-394.CrossRef
25.
go back to reference Chen Q: Comparison of different k epsilon models for indoor air flow computations. Numer Heat Tr B-fund. 1995, 28 (3): 353-369.CrossRef Chen Q: Comparison of different k epsilon models for indoor air flow computations. Numer Heat Tr B-fund. 1995, 28 (3): 353-369.CrossRef
26.
go back to reference Zhang Z, Zhai ZQ, Zhang W, Chen QY: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2-comparison with experimental data from literature. Hvac&r Res. 2007, 13 (6): 871-886.CrossRef Zhang Z, Zhai ZQ, Zhang W, Chen QY: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2-comparison with experimental data from literature. Hvac&r Res. 2007, 13 (6): 871-886.CrossRef
27.
go back to reference Zhang Z, Chen X, Mazumdar S, Zhang TF, Chen QY: Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. Build Environ. 2009, 44 (1): 85-94.CrossRef Zhang Z, Chen X, Mazumdar S, Zhang TF, Chen QY: Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. Build Environ. 2009, 44 (1): 85-94.CrossRef
28.
go back to reference Brohus H, Balling KD, Jeppesen D: Influence of movements on contaminant transport in an operating room. Indoor Air 2005: Proceedings of the 10th International Conference on Indoor Air Quality and Climate. 2005, 1–5: 3106-3111. Brohus H, Balling KD, Jeppesen D: Influence of movements on contaminant transport in an operating room. Indoor Air 2005: Proceedings of the 10th International Conference on Indoor Air Quality and Climate. 2005, 1–5: 3106-3111.
29.
go back to reference Han ZY, Weng WG, Huang QY, Fu M, Yang J, Luo N: Aerodynamic characteristics of human movement behaviours in full-scale environment: comparison of limbs pendulum and body motion. Indoor and Built Environment. (published online) Han ZY, Weng WG, Huang QY, Fu M, Yang J, Luo N: Aerodynamic characteristics of human movement behaviours in full-scale environment: comparison of limbs pendulum and body motion. Indoor and Built Environment. (published online)
30.
go back to reference Zhu SW, Kato S, Murakami S, Hayashi T: Study on inhalation region by means of CFD analysis and experiment. Build Environ. 2005, 40 (10): 1329-1336.CrossRef Zhu SW, Kato S, Murakami S, Hayashi T: Study on inhalation region by means of CFD analysis and experiment. Build Environ. 2005, 40 (10): 1329-1336.CrossRef
31.
go back to reference Gao N, Niu J: Transient CFD simulation of the respiration process and inter-person exposure assessment. Build Environ. 2006, 41 (9): 1214-1222.CrossRef Gao N, Niu J: Transient CFD simulation of the respiration process and inter-person exposure assessment. Build Environ. 2006, 41 (9): 1214-1222.CrossRef
32.
go back to reference Han ZY, Weng WG, Huang QY: Characterizations of particle size distribution of the droplets exhaled by sneeze. J R Soc Interface. 2013, 10 (88): 1-11.CrossRef Han ZY, Weng WG, Huang QY: Characterizations of particle size distribution of the droplets exhaled by sneeze. J R Soc Interface. 2013, 10 (88): 1-11.CrossRef
33.
go back to reference Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, Katoshevskig D: Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009, 40 (2): 122-133.CrossRef Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, Katoshevskig D: Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009, 40 (2): 122-133.CrossRef
35.
go back to reference Nicas M, Nazaroff WW, Hubbard A: Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. J Occup Env Hyg. 2005, 2 (3): 143-154.CrossRef Nicas M, Nazaroff WW, Hubbard A: Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. J Occup Env Hyg. 2005, 2 (3): 143-154.CrossRef
36.
go back to reference Sze To GN, Chao CYH: Review and comparison between the Wells-Riley and dose–response approaches to risk assessment of infectious respiratory diseases. Indoor Air. 2010, 20 (1): 2-16.CrossRefPubMed Sze To GN, Chao CYH: Review and comparison between the Wells-Riley and dose–response approaches to risk assessment of infectious respiratory diseases. Indoor Air. 2010, 20 (1): 2-16.CrossRefPubMed
37.
go back to reference Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR: Defining intake fraction. Environ Sci Technol. 2002, 36 (9): 207-216.CrossRef Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR: Defining intake fraction. Environ Sci Technol. 2002, 36 (9): 207-216.CrossRef
38.
go back to reference Sze To GN, Wan MP, Chao CYH, Wei F, Yu SCT, Kwan JKC: A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics. Indoor Air. 2008, 18 (5): 425-438.CrossRefPubMed Sze To GN, Wan MP, Chao CYH, Wei F, Yu SCT, Kwan JKC: A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics. Indoor Air. 2008, 18 (5): 425-438.CrossRefPubMed
39.
go back to reference Sims AC, Burkett SE, Yount B, Pickles RJ: SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Res. 2008, 133 (1): 33-44.CrossRefPubMed Sims AC, Burkett SE, Yount B, Pickles RJ: SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Res. 2008, 133 (1): 33-44.CrossRefPubMed
40.
go back to reference Kariwa H, Fujii N, Takashima I: Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res. 2004, 52 (3): 105-112.PubMed Kariwa H, Fujii N, Takashima I: Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res. 2004, 52 (3): 105-112.PubMed
41.
go back to reference Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW: Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005, 194 (1–2): 1-6.CrossRefPubMed Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW: Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005, 194 (1–2): 1-6.CrossRefPubMed
42.
go back to reference Nyka W: Studies on the infective particle in airborne tuberculosis. I. Observations in mice infected with a bovine strain of m. tuberculosis. Am Rev Respir Dis. 1962, 85: 33-39.PubMed Nyka W: Studies on the infective particle in airborne tuberculosis. I. Observations in mice infected with a bovine strain of m. tuberculosis. Am Rev Respir Dis. 1962, 85: 33-39.PubMed
43.
go back to reference Wan MP, Chao CYH, Ng YD, To GNS, Yu WC: Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system. Aerosol Sci Technol. 2007, 41 (3): 244-258.CrossRef Wan MP, Chao CYH, Ng YD, To GNS, Yu WC: Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system. Aerosol Sci Technol. 2007, 41 (3): 244-258.CrossRef
44.
go back to reference Hinds WC: Aerosol Technology. 1999, New York: John Wiley & Sons, Inc Hinds WC: Aerosol Technology. 1999, New York: John Wiley & Sons, Inc
45.
go back to reference Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ: Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol. 2005, 79 (24): 15511-15524.CrossRefPubMedPubMedCentral Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ: Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol. 2005, 79 (24): 15511-15524.CrossRefPubMedPubMedCentral
46.
go back to reference Loudon RG, Brown LC: Cough frequency in patients with respiratory disease. Am Rev Respir Dis. 1967, 96 (6): 1137-1143.PubMed Loudon RG, Brown LC: Cough frequency in patients with respiratory disease. Am Rev Respir Dis. 1967, 96 (6): 1137-1143.PubMed
47.
go back to reference Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004, 428 (6982): 561-564.CrossRefPubMed Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004, 428 (6982): 561-564.CrossRefPubMed
48.
go back to reference Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh WJ, Zaki S, Murphy B: Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol. 2004, 78 (7): 3572-3577.CrossRefPubMedPubMedCentral Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh WJ, Zaki S, Murphy B: Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol. 2004, 78 (7): 3572-3577.CrossRefPubMedPubMedCentral
49.
go back to reference Sze To GN, Chao CYH: Use of risk assessment and likelihood estimation to analyze spatial distribution pattern of respiratory infection cases. Risk Anal. 2011, 31 (3): 351-369.CrossRefPubMed Sze To GN, Chao CYH: Use of risk assessment and likelihood estimation to analyze spatial distribution pattern of respiratory infection cases. Risk Anal. 2011, 31 (3): 351-369.CrossRefPubMed
50.
go back to reference Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ: Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013, 9 (3): e1003205-CrossRefPubMedPubMedCentral Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ: Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013, 9 (3): e1003205-CrossRefPubMedPubMedCentral
Metadata
Title
Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis
Authors
Zhuyang Han
Gin Nam Sze To
Sau Chung Fu
Christopher Yu-Hang Chao
Wenguo Weng
Quanyi Huang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2014
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-14-434

Other articles of this Issue 1/2014

BMC Infectious Diseases 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.