Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Effect of cytomegalovirus reactivation on the time course of systemic host response biomarkers in previously immunocompetent critically ill patients with sepsis: a matched cohort study

Authors: Kirsten van de Groep, Stefan Nierkens, Olaf L. Cremer, Linda M. Peelen, Peter M. C. Klein Klouwenberg, Marcus J. Schultz, C. Erik Hack, Tom van der Poll, Marc J. M. Bonten, David S. Y. Ong, on behalf of the MARS consortium

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Cytomegalovirus (CMV) reactivation in previously immunocompetent critically ill patients is associated with increased mortality, which has been hypothesized to result from virus-induced immunomodulation. Therefore, we studied the effects of CMV reactivation on the temporal course of host response biomarkers in patients with sepsis.

Methods

In this matched cohort study, each sepsis patient developing CMV reactivation between day 3 and 17 (CMV+) was compared with one CMV seropositive patient without reactivation (CMVs+) and one CMV seronegative patient (CMVs−). CMV serostatus and plasma loads were determined by enzyme-linked immunoassays and real-time polymerase chain reaction, respectively. Systemic interleukin-6 (IL-6), IL-8, IL-18, interferon-gamma–induced protein-10 (IP-10), neutrophilic elastase, IL-1 receptor antagonist (RA), and IL-10 were measured at five time points by multiplex immunoassay. The effects of CMV reactivation on sequential concentrations of these biomarkers were assessed in multivariable mixed models.

Results

Among 64 CMV+ patients, 45 could be matched to CMVs+ or CMVs− controls or both. The two baseline characteristics and host response biomarker levels at viremia onset were similar between groups. CMV+ patients had increased IP-10 on day 7 after viremia onset (symmetric percentage difference +44% versus −15% when compared with CMVs+ and +37% versus +4% when compared with CMVs−) and decreased IL-1RA (−41% versus 0% and −49% versus +10%, respectively). However, multivariable analyses did not show an independent association between CMV reactivation and time trends of IL-6, IP-10, IL-10, or IL-1RA.

Conclusion

CMV reactivation was not independently associated with changes in the temporal trends of host response biomarkers in comparison with non-reactivating patients. Therefore, these markers should not be used as surrogate clinical endpoints for interventional studies evaluating anti-CMV therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care. 2015;30:276–81.CrossRef Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care. 2015;30:276–81.CrossRef
2.
go back to reference Heininger A, Haeberle H, Fischer I, Beck R, Riessen R, Rohde F, et al. Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care. 2011;15:R77.CrossRef Heininger A, Haeberle H, Fischer I, Beck R, Riessen R, Rohde F, et al. Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care. 2011;15:R77.CrossRef
3.
go back to reference Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300:413–22.CrossRef Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300:413–22.CrossRef
4.
go back to reference Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. 2009;37:2350–8.CrossRef Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. 2009;37:2350–8.CrossRef
5.
go back to reference Lachance P, Chen J, Featherstone R, Sligl WI. Association Between Cytomegalovirus Reactivation and Clinical Outcomes in Immunocompetent Critically Ill Patients: A Systematic Review and Meta-Analysis. Open Forum Infect Dis. 2017;4:ofx029.CrossRef Lachance P, Chen J, Featherstone R, Sligl WI. Association Between Cytomegalovirus Reactivation and Clinical Outcomes in Immunocompetent Critically Ill Patients: A Systematic Review and Meta-Analysis. Open Forum Infect Dis. 2017;4:ofx029.CrossRef
6.
go back to reference Osawa R, Singh N. Cytomegalovirus infection in critically ill patients: a systematic review. Crit Care. 2009;13:R68.CrossRef Osawa R, Singh N. Cytomegalovirus infection in critically ill patients: a systematic review. Crit Care. 2009;13:R68.CrossRef
7.
go back to reference Ong DS, Spitoni C, Klein Klouwenberg PM, Verduyn Lunel FM, Frencken JF, Schultz MJ, et al. Cytomegalovirus reactivation and mortality in patients with acute respiratory distress syndrome. Intensive Care Med 2016;42:333–341.CrossRef Ong DS, Spitoni C, Klein Klouwenberg PM, Verduyn Lunel FM, Frencken JF, Schultz MJ, et al. Cytomegalovirus reactivation and mortality in patients with acute respiratory distress syndrome. Intensive Care Med 2016;42:333–341.CrossRef
8.
go back to reference Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, et al. Epidemiology of Multiple Herpes Viremia in Previously Immunocompetent Patients With Septic Shock. Clin Infect Dis. 2017;64:1204–10.CrossRef Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, et al. Epidemiology of Multiple Herpes Viremia in Previously Immunocompetent Patients With Septic Shock. Clin Infect Dis. 2017;64:1204–10.CrossRef
9.
go back to reference Chiche L, Forel JM, Roch A, Guervilly C, Pauly V, Allardet-Servent J, et al. Active cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med. 2009;37:1850–7.CrossRef Chiche L, Forel JM, Roch A, Guervilly C, Pauly V, Allardet-Servent J, et al. Active cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med. 2009;37:1850–7.CrossRef
10.
go back to reference Chiche L, Forel JM, Thomas G, Farnarier C, Cognet C, Guervilly C, et al. Interferon-gamma production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med. 2012;40:3162–9.CrossRef Chiche L, Forel JM, Thomas G, Farnarier C, Cognet C, Guervilly C, et al. Interferon-gamma production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med. 2012;40:3162–9.CrossRef
11.
go back to reference Clari MA, Aguilar G, Benet I, Belda J, Gimenez E, Bravo D, et al. Evaluation of cytomegalovirus (CMV)-specific T-cell immunity for the assessment of the risk of active CMV infection in non-immunosuppressed surgical and trauma intensive care unit patients. J Med Virol. 2013;85:1802–10.CrossRef Clari MA, Aguilar G, Benet I, Belda J, Gimenez E, Bravo D, et al. Evaluation of cytomegalovirus (CMV)-specific T-cell immunity for the assessment of the risk of active CMV infection in non-immunosuppressed surgical and trauma intensive care unit patients. J Med Virol. 2013;85:1802–10.CrossRef
12.
go back to reference Heininger A, Jahn G, Engel C, Notheisen T, Unertl K, Hamprecht K. Human cytomegalovirus infections in nonimmunosuppressed critically ill patients. Crit Care Med. 2001;29:541–7.CrossRef Heininger A, Jahn G, Engel C, Notheisen T, Unertl K, Hamprecht K. Human cytomegalovirus infections in nonimmunosuppressed critically ill patients. Crit Care Med. 2001;29:541–7.CrossRef
13.
go back to reference Papazian L, Hraiech S, Lehingue S, Roch A, Chiche L, Wiramus S, Forel JM. Cytomegalovirus reactivation in ICU patients. Intensive Care Med. 2016;42:28–37.CrossRef Papazian L, Hraiech S, Lehingue S, Roch A, Chiche L, Wiramus S, Forel JM. Cytomegalovirus reactivation in ICU patients. Intensive Care Med. 2016;42:28–37.CrossRef
14.
go back to reference Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis. 2004;4:725–38.CrossRef Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis. 2004;4:725–38.CrossRef
15.
go back to reference Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35:755–62.CrossRef Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35:755–62.CrossRef
16.
go back to reference Limaye AP, Boeckh M. CMV in critically ill patients: pathogen or bystander? Rev Med Virol. 2010;20:372–9.CrossRef Limaye AP, Boeckh M. CMV in critically ill patients: pathogen or bystander? Rev Med Virol. 2010;20:372–9.CrossRef
17.
go back to reference Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae. 2011;2:6.CrossRef Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae. 2011;2:6.CrossRef
18.
go back to reference Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9:e98819.CrossRef Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9:e98819.CrossRef
19.
go back to reference Freeman RB Jr. The ‘indirect’ effects of cytomegalovirus infection. Am J Transplant. 2009;9:2453–8.CrossRef Freeman RB Jr. The ‘indirect’ effects of cytomegalovirus infection. Am J Transplant. 2009;9:2453–8.CrossRef
20.
go back to reference Chilet M, Aguilar G, Benet I, Belda J, Tormo N, Carbonell JA, et al. Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol. 2010;82:1384–91.CrossRef Chilet M, Aguilar G, Benet I, Belda J, Tormo N, Carbonell JA, et al. Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol. 2010;82:1384–91.CrossRef
21.
go back to reference Limaye AP, Stapleton RD, Peng L, Gunn SR, Kimball LE, Hyzy R, et al. Effect of Ganciclovir on IL-6 Levels Among Cytomegalovirus-Seropositive Adults With Critical Illness: A Randomized Clinical Trial. JAMA. 2017;318:731–40.CrossRef Limaye AP, Stapleton RD, Peng L, Gunn SR, Kimball LE, Hyzy R, et al. Effect of Ganciclovir on IL-6 Levels Among Cytomegalovirus-Seropositive Adults With Critical Illness: A Randomized Clinical Trial. JAMA. 2017;318:731–40.CrossRef
22.
go back to reference Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods. 2013;61:10–7.CrossRef Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods. 2013;61:10–7.CrossRef
23.
go back to reference Scholman RC, Giovannone B, Hiddingh S, Meerding JM, Malvar Fernandez B, van Dijk MEA, et al. Effect of anticoagulants on 162 circulating immune related proteins in healthy subjects. Cytokine. 2018;106:114–24.CrossRef Scholman RC, Giovannone B, Hiddingh S, Meerding JM, Malvar Fernandez B, van Dijk MEA, et al. Effect of anticoagulants on 162 circulating immune related proteins in healthy subjects. Cytokine. 2018;106:114–24.CrossRef
24.
go back to reference Cole TJ, Altman DG. Statistics Notes: Percentage differences, symmetry, and natural logarithms. BMJ. 2017;358:j3683.CrossRef Cole TJ, Altman DG. Statistics Notes: Percentage differences, symmetry, and natural logarithms. BMJ. 2017;358:j3683.CrossRef
25.
go back to reference Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med. 1997;16:2349–80.CrossRef Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med. 1997;16:2349–80.CrossRef
26.
go back to reference Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33:1–6 discussion 230–2.CrossRef Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33:1–6 discussion 230–2.CrossRef
27.
go back to reference Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.CrossRef Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.CrossRef
28.
go back to reference de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM, Girbes AR. Unexplained mortality differences between septic shock trials: a systematic analysis of population characteristics and control-group mortality rates. Intensive Care Med. 2018;44:311–22.CrossRef de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM, Girbes AR. Unexplained mortality differences between septic shock trials: a systematic analysis of population characteristics and control-group mortality rates. Intensive Care Med. 2018;44:311–22.CrossRef
29.
go back to reference Blanquer J, Chilet M, Benet I, Aguilar G, Munoz-Cobo B, Tellez A, et al. Immunological insights into the pathogenesis of active CMV infection in non-immunosuppressed critically ill patients. J Med Virol. 2011;83:1966–71.CrossRef Blanquer J, Chilet M, Benet I, Aguilar G, Munoz-Cobo B, Tellez A, et al. Immunological insights into the pathogenesis of active CMV infection in non-immunosuppressed critically ill patients. J Med Virol. 2011;83:1966–71.CrossRef
Metadata
Title
Effect of cytomegalovirus reactivation on the time course of systemic host response biomarkers in previously immunocompetent critically ill patients with sepsis: a matched cohort study
Authors
Kirsten van de Groep
Stefan Nierkens
Olaf L. Cremer
Linda M. Peelen
Peter M. C. Klein Klouwenberg
Marcus J. Schultz
C. Erik Hack
Tom van der Poll
Marc J. M. Bonten
David S. Y. Ong
on behalf of the MARS consortium
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2261-0

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue