Skip to main content
Top
Published in: Digestive Diseases and Sciences 4/2017

01-04-2017 | Original Article

Effect of Aging on the Composition of Fecal Microbiota in Donors for FMT and Its Impact on Clinical Outcomes

Authors: Rohit Anand, Yang Song, Shashank Garg, Mohit Girotra, Amitasha Sinha, Anita Sivaraman, Laila Phillips, Sudhir K. Dutta

Published in: Digestive Diseases and Sciences | Issue 4/2017

Login to get access

Abstract

Background

Fecal microbiota transplantation (FMT) is emerging as an effective therapy for the treatment of recurrent Clostridium difficile infection (RCDI). Selecting an appropriate donor is vital to the success of FMT. However, the relationship between age of donors and the efficacy of FMT has not been examined to date. The aim of this study was to examine the effect of age of healthy donors on their fecal microbiota and assess the impact of these changes on the clinical efficacy of FMT.

Materials and Methods

This IRB-approved prospective study enrolled donors who were deemed healthy for FMT after careful detailed screening for infectious diseases per institutional protocol. The study was conducted between January 2011 and October 2014. Fecal samples were processed and analyzed using 16S rRNA gene amplicon sequencing. Differences in relative abundance and diversity of the donor fecal microbiota were analyzed in donors above and below 60 years of age. Effect of fecal microbiota from donors of different age groups on the efficacy of FMT was also evaluated.

Results

Twenty-eight healthy human subjects from ages 20–82 years were enrolled as donors for FMT. All patients receiving FMT from their respective donors had resolution of RCDI symptoms and had a negative C. difficile toxin test 4–12 weeks after FMT. Genomic analysis showed that the relative abundance of phylum Actinobacteria and family Bifidobacteriaceae was reduced in the donors ≥60 years of age (p < 0.05). However, Bacteroidetes-to-Fermicutes ratio did not demonstrate a significant change between the two groups. Furthermore, microbial diversity did not change significantly with advancing age.

Conclusion

These observations suggest that aging in healthy donors is associated with compositional alterations in the fecal microbiome without change in the overall microbial diversity. These changes do not seem to affect the clinical efficacy of FMT in RCDI patients over 12 months.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:825–834.CrossRefPubMed Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:825–834.CrossRefPubMed
2.
go back to reference Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med. 2008;359:1932–1940.CrossRefPubMed Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med. 2008;359:1932–1940.CrossRefPubMed
3.
go back to reference McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium disease. Am J Gastroenterol. 2002;97:1769–1775.CrossRefPubMed McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium disease. Am J Gastroenterol. 2002;97:1769–1775.CrossRefPubMed
4.
go back to reference Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect. 2011;53:994–1002.CrossRef Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect. 2011;53:994–1002.CrossRef
6.
go back to reference Brandt LJ, Borody TJ, Campbell J. Endoscopic fecal microbiota transplantation: “first-line” treatment for severe Clostridium difficile infection? J Clin Gastroenterol. 2011;45:655–657.CrossRefPubMed Brandt LJ, Borody TJ, Campbell J. Endoscopic fecal microbiota transplantation: “first-line” treatment for severe Clostridium difficile infection? J Clin Gastroenterol. 2011;45:655–657.CrossRefPubMed
7.
go back to reference van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415.CrossRefPubMed van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415.CrossRefPubMed
8.
go back to reference Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431–455.CrossRefPubMed Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431–455.CrossRefPubMed
9.
go back to reference Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108:478–498; quiz 99. Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108:478–498; quiz 99.
10.
11.
go back to reference Nelson MC, Morrison HG, Benjamino J, et al. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One. 2014;9:e94249.CrossRefPubMedPubMedCentral Nelson MC, Morrison HG, Benjamino J, et al. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One. 2014;9:e94249.CrossRefPubMedPubMedCentral
12.
go back to reference White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5:e1000352.CrossRefPubMedPubMedCentral White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5:e1000352.CrossRefPubMedPubMedCentral
13.
go back to reference Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol. 2009;7:61–71.CrossRefPubMed Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol. 2009;7:61–71.CrossRefPubMed
14.
go back to reference Makivuokko H, Tiihonen K, Tynkkynen S, et al. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103:227–234.CrossRefPubMed Makivuokko H, Tiihonen K, Tynkkynen S, et al. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103:227–234.CrossRefPubMed
15.
go back to reference Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5:e10667.CrossRefPubMedPubMedCentral Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5:e10667.CrossRefPubMedPubMedCentral
16.
go back to reference Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–1033.CrossRefPubMedPubMedCentral Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–1033.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108:4586–4591.CrossRefPubMed Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108:4586–4591.CrossRefPubMed
19.
go back to reference Woodmansey EJ, McMurdo ME, Macfarlane GT, et al. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol. 2004;70:6113–6120.CrossRefPubMedPubMedCentral Woodmansey EJ, McMurdo ME, Macfarlane GT, et al. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol. 2004;70:6113–6120.CrossRefPubMedPubMedCentral
20.
go back to reference Hopkins MJ, Sharp R, Macfarlane GT. Variation in human intestinal microbiota with age. Dig Liver. 2002;34:S12–S18.CrossRef Hopkins MJ, Sharp R, Macfarlane GT. Variation in human intestinal microbiota with age. Dig Liver. 2002;34:S12–S18.CrossRef
21.
go back to reference Zwielehner J, Liszt K, Handschur M, et al. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol. 2009;44:440–446.CrossRefPubMed Zwielehner J, Liszt K, Handschur M, et al. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol. 2009;44:440–446.CrossRefPubMed
22.
go back to reference Ivanov D, Emonet C, Foata F, et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem. 2006;281:17246–17252.CrossRefPubMed Ivanov D, Emonet C, Foata F, et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem. 2006;281:17246–17252.CrossRefPubMed
23.
go back to reference Ouwehand AC, Isolauri E, Kirjavainen PV, et al. Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett. 1999;172:61–64.CrossRefPubMed Ouwehand AC, Isolauri E, Kirjavainen PV, et al. Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett. 1999;172:61–64.CrossRefPubMed
24.
go back to reference Matthew JH, Alexa RW, Michael JS, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107:761–767. doi:10.1038/ajg.2011.482.CrossRef Matthew JH, Alexa RW, Michael JS, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107:761–767. doi:10.​1038/​ajg.​2011.​482.CrossRef
Metadata
Title
Effect of Aging on the Composition of Fecal Microbiota in Donors for FMT and Its Impact on Clinical Outcomes
Authors
Rohit Anand
Yang Song
Shashank Garg
Mohit Girotra
Amitasha Sinha
Anita Sivaraman
Laila Phillips
Sudhir K. Dutta
Publication date
01-04-2017
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 4/2017
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4449-6

Other articles of this Issue 4/2017

Digestive Diseases and Sciences 4/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.