Skip to main content
Top
Published in: Annals of Intensive Care 1/2021

Open Access 01-12-2021 | ECMO | Research

Impact of cooling method on the outcome of initial shockable or non-shockable out of hospital cardiac arrest patients receiving target temperature management: a nationwide multicentre cohort study

Authors: Makoto Watanabe, Tasuku Matsuyama, Hikaru Oe, Makoto Sasaki, Yuki Nakamura, Yuki Miyamoto, Nobunaga Okada, Tetsuhisa Kitamura, Bon Ohta

Published in: Annals of Intensive Care | Issue 1/2021

Login to get access

Abstract

Background

Little is known about the effectiveness of surface cooling (SC) and endovascular cooling (EC) on the outcome of out-of-hospital cardiac arrest (OHCA) patients receiving target temperature management (TTM) according to their initial rhythm.

Methods

We retrospectively analysed data from the Japanese Association for Acute Medicine Out‐of‐Hospital Cardiac Arrest registry, a multicentre, prospective nationwide database in Japan. For our analysis, OHCA patients aged ≥ 18 years who were treated with TTM between June 2014 and December 2017 were included. The primary outcome was 30-day survival with favourable neurological outcome defined as a Glasgow–Pittsburgh cerebral performance category score of 1 or 2. Cooling methods were divided into the following groups: SC (ice packs, fans, air blankets, and surface gel pads) and EC (endovascular catheters and any dialysis technique). We investigated the efficacy of the two categories of cooling methods in two different patient groups divided according to their initially documented rhythm at the scene (shockable or non-shockable) using multivariable logistic regression analysis and propensity score analysis with inverse probability weighting (IPW).

Results

In the final analysis, 1082 patients were included. Of these, 513 (47.4%) had an initial shockable rhythm and 569 (52.6%) had an initial non-shockable rhythm. The proportion of patients with favourable neurological outcomes in SC and EC was 59.9% vs. 58.3% (264/441 vs. 42/72), and 11.8% (58/490) vs. 21.5% (17/79) in the initial shockable patients and the initial non-shockable patients, respectively. In the multivariable logistic regression analysis, differences between the two cooling methods were not observed among the initial shockable patients (adjusted odd ratio [AOR] 1.51, 95% CI 0.76–3.03), while EC was associated with better neurological outcome among the initial non-shockable patients (AOR 2.21, 95% CI 1.19–4.11). This association was constant in propensity score analysis with IPW (OR 1.40, 95% CI 0.83–2.36; OR 1.87, 95% CI 1.01–3.47 among the initial shockable and non-shockable patients, respectively).

Conclusion

We suggested that the use of EC was associated with better neurological outcomes in OHCA patients with initial non-shockable rhythm, but not in those with initial shockable rhythm. A TTM implementation strategy based on initial rhythm may be important.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European resuscitation council and European society of intensive care medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69.CrossRef Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European resuscitation council and European society of intensive care medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69.CrossRef
2.
go back to reference Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(suppl 2):366–468. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(suppl 2):366–468.
3.
go back to reference Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef
4.
go back to reference Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRef Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRef
5.
go back to reference Kim KH, Shin SD, Song KJ, Ro YS, Kim YJ, Hong KJ, et al. Cooling methods of targeted temperature management and neurological recovery after out-of-hospital cardiac arrest: a nationwide multicenter multi-level analysis. Resuscitation. 2018;125:56–65.CrossRef Kim KH, Shin SD, Song KJ, Ro YS, Kim YJ, Hong KJ, et al. Cooling methods of targeted temperature management and neurological recovery after out-of-hospital cardiac arrest: a nationwide multicenter multi-level analysis. Resuscitation. 2018;125:56–65.CrossRef
6.
go back to reference Oh SH, Oh JS, Kim YM, Park KN, Choi SP, Kim GW, et al. An observational study of surface versus endovascular cooling techniques in cardiac arrest patients: a propensity-matched analysis. Crit Care. 2015;19:85.CrossRef Oh SH, Oh JS, Kim YM, Park KN, Choi SP, Kim GW, et al. An observational study of surface versus endovascular cooling techniques in cardiac arrest patients: a propensity-matched analysis. Crit Care. 2015;19:85.CrossRef
7.
go back to reference Look X, Li H, Ng M, Lim ETS, Pothiawala S, Tan KBK, Sewa DW, et al. Randomized controlled trial of internal and external targeted temperature management methods in post-cardiac arrest patients. Am J Emerg Med. 2018;36:66–72.CrossRef Look X, Li H, Ng M, Lim ETS, Pothiawala S, Tan KBK, Sewa DW, et al. Randomized controlled trial of internal and external targeted temperature management methods in post-cardiac arrest patients. Am J Emerg Med. 2018;36:66–72.CrossRef
8.
go back to reference Pittl U, Schratter A, Desch S, Diosteanu R, Lehmann D, Demmin K, et al. Invasive versus non-invasive cooling after in- and out-of-hospital cardiac arrest: a randomized trial. Clin Res Cardiol. 2013;102:607–14.CrossRef Pittl U, Schratter A, Desch S, Diosteanu R, Lehmann D, Demmin K, et al. Invasive versus non-invasive cooling after in- and out-of-hospital cardiac arrest: a randomized trial. Clin Res Cardiol. 2013;102:607–14.CrossRef
9.
go back to reference Deye N, Cariou A, Girardie P, Pichon N, Megarbane B, Midez P, et al. Endovascular versus external targeted temperature management for patients with out-of-hospital cardiac arrest: a randomized. Control Study Circ. 2015;132:182–93. Deye N, Cariou A, Girardie P, Pichon N, Megarbane B, Midez P, et al. Endovascular versus external targeted temperature management for patients with out-of-hospital cardiac arrest: a randomized. Control Study Circ. 2015;132:182–93.
10.
go back to reference Sonder P, Janssens GN, Beishuizen A, Henry CL, Rittenberger JC, Callaway CW, et al. Efficacy of different cooling technologies for therapeutic temperature management: a prospective intervention study. Resuscitation. 2018;124:14–20.CrossRef Sonder P, Janssens GN, Beishuizen A, Henry CL, Rittenberger JC, Callaway CW, et al. Efficacy of different cooling technologies for therapeutic temperature management: a prospective intervention study. Resuscitation. 2018;124:14–20.CrossRef
11.
go back to reference Lascarrou JB, Merdji H, Gouge AL, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327–37.CrossRef Lascarrou JB, Merdji H, Gouge AL, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327–37.CrossRef
12.
go back to reference Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, Rylander C, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–94.CrossRef Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, Rylander C, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–94.CrossRef
13.
go back to reference Nielsen N, Sunde K, Hovdenes J, Riker JR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.CrossRef Nielsen N, Sunde K, Hovdenes J, Riker JR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.CrossRef
14.
go back to reference Granfeldt A, Wissenberg M, Hansen SM, Lippert FK, Jensen TL, Hendriksen OM, et al. Clinical predictors of shockable versus non-shockable rhythms in patients with out-of-hospital cardiac arrest. Resuscitation. 2016;108:40–7.CrossRef Granfeldt A, Wissenberg M, Hansen SM, Lippert FK, Jensen TL, Hendriksen OM, et al. Clinical predictors of shockable versus non-shockable rhythms in patients with out-of-hospital cardiac arrest. Resuscitation. 2016;108:40–7.CrossRef
15.
go back to reference Stankovic N, Høybye M, Holmberg MJ, Lauridsen KG, Andersen LW, Granfeldt A. Factors associated with shockable versus non-shockable rhythms in patients with in-hospital cardiac arrest. Resuscitation. 2021;158:166–74.CrossRef Stankovic N, Høybye M, Holmberg MJ, Lauridsen KG, Andersen LW, Granfeldt A. Factors associated with shockable versus non-shockable rhythms in patients with in-hospital cardiac arrest. Resuscitation. 2021;158:166–74.CrossRef
16.
go back to reference Iwami T, Nichol G, Hiraide A, Hayashi Y, Nishiuchi T, Kajino K, et al. Continuous improvements in “chain of survival” increased survival after out-of-hospital cardiac arrests: a large-scale population-based study. Circulation. 2009;119:728–34.CrossRef Iwami T, Nichol G, Hiraide A, Hayashi Y, Nishiuchi T, Kajino K, et al. Continuous improvements in “chain of survival” increased survival after out-of-hospital cardiac arrests: a large-scale population-based study. Circulation. 2009;119:728–34.CrossRef
17.
go back to reference Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care. Perioper Resusc Circ. 2015;132:1286–300. Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care. Perioper Resusc Circ. 2015;132:1286–300.
18.
go back to reference Kitamura T, Iwami T, Atsumi T, Endo T, Kanna T, Kuroda Y, et al. The profile of Japanese association for acute medicine—out-of-hospital cardiac arrest registry in 2014–2015. Acute Med Surg. 2018;5:249–58.CrossRef Kitamura T, Iwami T, Atsumi T, Endo T, Kanna T, Kuroda Y, et al. The profile of Japanese association for acute medicine—out-of-hospital cardiac arrest registry in 2014–2015. Acute Med Surg. 2018;5:249–58.CrossRef
19.
go back to reference Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I study group. Lancet. 1994;343:1055–9.CrossRef Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I study group. Lancet. 1994;343:1055–9.CrossRef
20.
go back to reference Matsuyama T, Iwami T, Yamada T, Hayakawa K, Yoshiya K, Irisawa T, et al. Effect of serum albumin concentration on neurological outcome after out-of-hospital cardiac arrest (from the CRITICAL [comprehensive registry of intensive cares for OHCA survival] study in Osaka, Japan). Am J Cardiol. 2018;121:156–61.CrossRef Matsuyama T, Iwami T, Yamada T, Hayakawa K, Yoshiya K, Irisawa T, et al. Effect of serum albumin concentration on neurological outcome after out-of-hospital cardiac arrest (from the CRITICAL [comprehensive registry of intensive cares for OHCA survival] study in Osaka, Japan). Am J Cardiol. 2018;121:156–61.CrossRef
21.
go back to reference Irisawa T, Matsuyama T, Iwami T, Yamada T, Hayakawa K, Yoshiya K, et al. The effect of different target temperatures in targeted temperature management on neurologically favorable outcome after out-of-hospital cardiac arrest: a nationwide multicenter observational study in Japan (the JAAM-OHCA registry). Resuscitation. 2018;133:82–7.CrossRef Irisawa T, Matsuyama T, Iwami T, Yamada T, Hayakawa K, Yoshiya K, et al. The effect of different target temperatures in targeted temperature management on neurologically favorable outcome after out-of-hospital cardiac arrest: a nationwide multicenter observational study in Japan (the JAAM-OHCA registry). Resuscitation. 2018;133:82–7.CrossRef
22.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.
23.
go back to reference Testori C, Sterz F, Holzer M, Losert H, Arrich J, Herkner H, et al. The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation. 2012;83:596–601.CrossRef Testori C, Sterz F, Holzer M, Losert H, Arrich J, Herkner H, et al. The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation. 2012;83:596–601.CrossRef
24.
go back to reference Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002;288:3035–8.CrossRef Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002;288:3035–8.CrossRef
25.
go back to reference Johnsson J, Wahlström J, Dankiewicz J, Annborn M, Agarwal S, Dupont A, et al. Functional outcomes associated with varying levels of targeted temperature management after out-of-hospital cardiac arrest—an INTCAR2 registry analysis. Resuscitation. 2020;146:229–36.CrossRef Johnsson J, Wahlström J, Dankiewicz J, Annborn M, Agarwal S, Dupont A, et al. Functional outcomes associated with varying levels of targeted temperature management after out-of-hospital cardiac arrest—an INTCAR2 registry analysis. Resuscitation. 2020;146:229–36.CrossRef
26.
go back to reference Stub D, Smith K, Bray JE, Bernard S, Duffy SJ, Kaye DM. Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest. Heart. 2011;9718:1489–94.CrossRef Stub D, Smith K, Bray JE, Bernard S, Duffy SJ, Kaye DM. Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest. Heart. 2011;9718:1489–94.CrossRef
27.
go back to reference Søholm H, Kjaergaard J, Bro-Jeppesen J, Hartvig-Thomsen J, Lippert F, Køber L, et al. Prognostic implications of level-of-care at tertiary heart centers compared with other hospitals after resuscitation from out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2015;8:268–76.CrossRef Søholm H, Kjaergaard J, Bro-Jeppesen J, Hartvig-Thomsen J, Lippert F, Køber L, et al. Prognostic implications of level-of-care at tertiary heart centers compared with other hospitals after resuscitation from out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2015;8:268–76.CrossRef
28.
go back to reference Bartlett ES, Valenzuela T, Idris A, Deye N, Glover G, Gillies MA, et al. Systematic review and meta-analysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. Resuscitation. 2020;146:82–95.CrossRef Bartlett ES, Valenzuela T, Idris A, Deye N, Glover G, Gillies MA, et al. Systematic review and meta-analysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. Resuscitation. 2020;146:82–95.CrossRef
29.
go back to reference Calabró L, Bougouin W, Cariou A, De Fazio C, Skrifvars M, Soreide E, et al. Effect of different methods of cooling for targeted temperature management on outcome after cardiac arrest: a systematic review and meta-analysis. Crit Care. 2019;23:285.CrossRef Calabró L, Bougouin W, Cariou A, De Fazio C, Skrifvars M, Soreide E, et al. Effect of different methods of cooling for targeted temperature management on outcome after cardiac arrest: a systematic review and meta-analysis. Crit Care. 2019;23:285.CrossRef
30.
go back to reference Kim JG, Ahn C, Shin H, Kim W, Lim TH, Jang BH, et al. Efficacy of the cooling method for targeted temperature management in post-cardiac arrest patients: a systematic review and meta-analysis. Resuscitation. 2020;148:14–24.CrossRef Kim JG, Ahn C, Shin H, Kim W, Lim TH, Jang BH, et al. Efficacy of the cooling method for targeted temperature management in post-cardiac arrest patients: a systematic review and meta-analysis. Resuscitation. 2020;148:14–24.CrossRef
31.
go back to reference Choi DS, Kim T, Ro YS, Ahn KO, Lee EJ, Hwang SS, et al. Extracorporeal life support and survival after out-of-hospital cardiac arrest in a nationwide registry: a propensity score-matched analysis. Resuscitation. 2016;99:26–32.CrossRef Choi DS, Kim T, Ro YS, Ahn KO, Lee EJ, Hwang SS, et al. Extracorporeal life support and survival after out-of-hospital cardiac arrest in a nationwide registry: a propensity score-matched analysis. Resuscitation. 2016;99:26–32.CrossRef
32.
go back to reference Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85:762–8.CrossRef Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2014;85:762–8.CrossRef
33.
go back to reference Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef
36.
go back to reference Perman SM, Grossestreuer AV, Wiebe DJ, Carr BG, Abella BS, Gaieski DF. The utility of therapeutic hypothermia for post-cardiac arrest syndrome patients with an initial nonshockable rhythm. Circulation. 2015;132:2146–51.CrossRef Perman SM, Grossestreuer AV, Wiebe DJ, Carr BG, Abella BS, Gaieski DF. The utility of therapeutic hypothermia for post-cardiac arrest syndrome patients with an initial nonshockable rhythm. Circulation. 2015;132:2146–51.CrossRef
37.
go back to reference Callaway CW, Soar J, Aibiki M, Böttiger BW, Brooks SC, Deakin CD, et al. Part 4: advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132:S84-145.PubMed Callaway CW, Soar J, Aibiki M, Böttiger BW, Brooks SC, Deakin CD, et al. Part 4: advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132:S84-145.PubMed
38.
go back to reference Soar J, Berg KM, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2020;156:A80–119.CrossRef Soar J, Berg KM, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2020;156:A80–119.CrossRef
39.
go back to reference Peskine A, Cariou A, Hajage D, Deye N, Guérot E, Dres M, et al. Long-term disabilities of survivors of out-of-hospital cardiac arrest: the Hanox study. Chest. 2021;159:699–711.CrossRef Peskine A, Cariou A, Hajage D, Deye N, Guérot E, Dres M, et al. Long-term disabilities of survivors of out-of-hospital cardiac arrest: the Hanox study. Chest. 2021;159:699–711.CrossRef
Metadata
Title
Impact of cooling method on the outcome of initial shockable or non-shockable out of hospital cardiac arrest patients receiving target temperature management: a nationwide multicentre cohort study
Authors
Makoto Watanabe
Tasuku Matsuyama
Hikaru Oe
Makoto Sasaki
Yuki Nakamura
Yuki Miyamoto
Nobunaga Okada
Tetsuhisa Kitamura
Bon Ohta
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2021
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-021-00953-y

Other articles of this Issue 1/2021

Annals of Intensive Care 1/2021 Go to the issue