Skip to main content
Top
Published in: Cardiology and Therapy 2/2024

Open Access 04-05-2024 | Echocardiography | Review

Broadening Perspectives of Artificial Intelligence in Echocardiography

Authors: Karthik Seetharam, Harshith Thyagaturu, Gabriel Lora Ferreira, Aditya Patel, Chinmay Patel, Asim Elahi, Roman Pachulski, Jilan Shah, Parvez Mir, Arunita Thodimela, Manya Pala, Zeyar Thet, Yasmin Hamirani

Published in: Cardiology and Therapy | Issue 2/2024

Login to get access

Abstract

Echocardiography frequently serves as the first-line treatment of diagnostic imaging for several pathological entities in cardiology. Artificial intelligence (AI) has been growing substantially in information technology and various commercial industries. Machine learning (ML), a branch of AI, has been shown to expand the capabilities and potential of echocardiography. ML algorithms expand the field of echocardiography by automated assessment of the ejection fraction and left ventricular function, integrating novel approaches such as speckle tracking or tissue Doppler echocardiography or vector flow mapping, improved phenotyping, distinguishing between cardiac conditions, and incorporating information from mobile health and genomics. In this review article, we assess the impact of AI and ML in echocardiography.
Literature
1.
go back to reference Seetharam K, Shrestha S, Sengupta PP. Cardiovascular imaging and intervention through the lens of artificial intelligence. Interv Cardiol. 2021;16:e31.PubMedPubMedCentralCrossRef Seetharam K, Shrestha S, Sengupta PP. Cardiovascular imaging and intervention through the lens of artificial intelligence. Interv Cardiol. 2021;16:e31.PubMedPubMedCentralCrossRef
2.
go back to reference Sengupta PP, Shrestha S. Machine learning for data-driven discovery: the rise and relevance. JACC Cardiovasc Imaging. 2019;12(4):690–2.PubMedCrossRef Sengupta PP, Shrestha S. Machine learning for data-driven discovery: the rise and relevance. JACC Cardiovasc Imaging. 2019;12(4):690–2.PubMedCrossRef
3.
go back to reference Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86.PubMedCrossRef Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86.PubMedCrossRef
4.
go back to reference Seetharam K, Shrestha S, Sengupta P. Artificial intelligence in cardiac imaging. US Cardiol Rev. 2020;13:110–6.CrossRef Seetharam K, Shrestha S, Sengupta P. Artificial intelligence in cardiac imaging. US Cardiol Rev. 2020;13:110–6.CrossRef
5.
go back to reference Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.PubMedCrossRef Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.PubMedCrossRef
6.
go back to reference de Siqueira VS, Borges MM, Furtado RG, Dourado CN, da Costa RM. Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: a systematic review. Artif Intell Med. 2021;120: 102165.PubMedCrossRef de Siqueira VS, Borges MM, Furtado RG, Dourado CN, da Costa RM. Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: a systematic review. Artif Intell Med. 2021;120: 102165.PubMedCrossRef
7.
go back to reference Kulina R, Seetharam K, Agarwal S, Wiley BM, Narula J, Chaudhry FA, et al. Beamforming algorithms for endocardial border detection. Echocardiography. 2018;35(10):1499–506.PubMedCrossRef Kulina R, Seetharam K, Agarwal S, Wiley BM, Narula J, Chaudhry FA, et al. Beamforming algorithms for endocardial border detection. Echocardiography. 2018;35(10):1499–506.PubMedCrossRef
8.
go back to reference Kusunose K. Steps to use artificial intelligence in echocardiography. J Echocardiogr. 2021;19(1):21–7.PubMedCrossRef Kusunose K. Steps to use artificial intelligence in echocardiography. J Echocardiogr. 2021;19(1):21–7.PubMedCrossRef
9.
go back to reference Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019;6(2):R41–52.PubMedPubMedCentralCrossRef Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019;6(2):R41–52.PubMedPubMedCentralCrossRef
10.
go back to reference Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.PubMedCrossRef Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.PubMedCrossRef
11.
go back to reference Seetharam K, Shrestha S, Mills J, Sengupta P. Artificial intelligence in nuclear cardiology: adding value to prognostication. Curr Cardiovasc Imaging Rep. 2019;12:1–6. Seetharam K, Shrestha S, Mills J, Sengupta P. Artificial intelligence in nuclear cardiology: adding value to prognostication. Curr Cardiovasc Imaging Rep. 2019;12:1–6.
12.
go back to reference Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.PubMedCrossRef Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.PubMedCrossRef
14.
go back to reference Seetharam K, Balla S, Bianco C, Cheung J, Pachulski R, Asti D, et al. Applications of machine learning in cardiology. Cardiol Ther. 2022;11(3):355–68.PubMedPubMedCentralCrossRef Seetharam K, Balla S, Bianco C, Cheung J, Pachulski R, Asti D, et al. Applications of machine learning in cardiology. Cardiol Ther. 2022;11(3):355–68.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Seetharam K, Kagiyama N, Shrestha S, Sengupta P. Clinical inference from cardiovascular imaging: paradigm shift towards machine-based intelligent platform. Curr Treat Options Cardiovasc Med. 2020;22(3):8CrossRef Seetharam K, Kagiyama N, Shrestha S, Sengupta P. Clinical inference from cardiovascular imaging: paradigm shift towards machine-based intelligent platform. Curr Treat Options Cardiovasc Med. 2020;22(3):8CrossRef
17.
go back to reference Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35.PubMedPubMedCentralCrossRef Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35.PubMedPubMedCentralCrossRef
18.
go back to reference Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med. 2019;21(6):25.PubMedCrossRef Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med. 2019;21(6):25.PubMedCrossRef
19.
go back to reference Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40(25):2058–73.PubMedPubMedCentralCrossRef Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40(25):2058–73.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.PubMedCrossRef Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.PubMedCrossRef
22.
go back to reference Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMedCrossRef Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMedCrossRef
23.
go back to reference Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580(7802):252–6.PubMedPubMedCentralCrossRef Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580(7802):252–6.PubMedPubMedCentralCrossRef
24.
go back to reference Tromp J, Seekings PJ, Hung CL, Iversen MB, Frost MJ, Ouwerkerk W, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022;4(1):e46–54.PubMedCrossRef Tromp J, Seekings PJ, Hung CL, Iversen MB, Frost MJ, Ouwerkerk W, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022;4(1):e46–54.PubMedCrossRef
25.
go back to reference Howard JP, Stowell CC, Cole GD, Ananthan K, Demetrescu CD, Pearce K, et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ: Cardiovasc Imaging. 2021;14(5):e011951.PubMed Howard JP, Stowell CC, Cole GD, Ananthan K, Demetrescu CD, Pearce K, et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ: Cardiovasc Imaging. 2021;14(5):e011951.PubMed
26.
go back to reference Hughes JW, Yuan N, He B, Ouyang J, Ebinger J, Botting P, et al. Deep learning evaluation of biomarkers from echocardiogram videos. EBioMedicine. 2021;73: 103613.PubMedPubMedCentralCrossRef Hughes JW, Yuan N, He B, Ouyang J, Ebinger J, Botting P, et al. Deep learning evaluation of biomarkers from echocardiogram videos. EBioMedicine. 2021;73: 103613.PubMedPubMedCentralCrossRef
27.
go back to reference Duffy G, Cheng PP, Yuan N, He B, Kwan AC, Shun-Shin MJ, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 2022;7(4):386–95.PubMedPubMedCentralCrossRef Duffy G, Cheng PP, Yuan N, He B, Kwan AC, Shun-Shin MJ, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 2022;7(4):386–95.PubMedPubMedCentralCrossRef
28.
go back to reference Salte IM, Østvik A, Smistad E, Melichova D, Nguyen TM, Karlsen S, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. Cardiovasc Imaging. 2021;14(10):1918–28. Salte IM, Østvik A, Smistad E, Melichova D, Nguyen TM, Karlsen S, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. Cardiovasc Imaging. 2021;14(10):1918–28.
29.
go back to reference Sengupta PP, Shrestha S, Kagiyama N, Hamirani Y, Kulkarni H, Yanamala N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging. 2021;14(9):1707–20.PubMedPubMedCentralCrossRef Sengupta PP, Shrestha S, Kagiyama N, Hamirani Y, Kulkarni H, Yanamala N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging. 2021;14(9):1707–20.PubMedPubMedCentralCrossRef
31.
go back to reference Pandey A, Kagiyama N, Yanamala N, Segar MW, Cho JS, Tokodi M, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging. 2021;14(10):1887–900.PubMedCrossRef Pandey A, Kagiyama N, Yanamala N, Segar MW, Cho JS, Tokodi M, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging. 2021;14(10):1887–900.PubMedCrossRef
33.
go back to reference Mishra RK, Tison GH, Fang Q, Scherzer R, Whooley MA, Schiller NB. Association of machine learning–derived phenogroupings of echocardiographic variables with heart failure in stable coronary artery disease: the heart and soul study. J Am Soc Echocardiogr. 2020;33(3):322-31. e1.PubMedPubMedCentralCrossRef Mishra RK, Tison GH, Fang Q, Scherzer R, Whooley MA, Schiller NB. Association of machine learning–derived phenogroupings of echocardiographic variables with heart failure in stable coronary artery disease: the heart and soul study. J Am Soc Echocardiogr. 2020;33(3):322-31. e1.PubMedPubMedCentralCrossRef
34.
go back to reference Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22(1):148–58.PubMedCrossRef Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22(1):148–58.PubMedCrossRef
35.
go back to reference Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr. 2015;28(10):1171-81. e2.PubMedCrossRef Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr. 2015;28(10):1171-81. e2.PubMedCrossRef
36.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.PubMedCrossRef Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.PubMedCrossRef
37.
go back to reference Koh AS, Tay WT, Teng THK, Vedin O, Benson L, Dahlstrom U, et al. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur J Heart Fail. 2017;19(12):1624–34.PubMedCrossRef Koh AS, Tay WT, Teng THK, Vedin O, Benson L, Dahlstrom U, et al. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur J Heart Fail. 2017;19(12):1624–34.PubMedCrossRef
38.
go back to reference Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19(12):1574–85.PubMedCrossRef Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19(12):1574–85.PubMedCrossRef
39.
go back to reference Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70(20):2476–86.PubMedCrossRef Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70(20):2476–86.PubMedCrossRef
40.
go back to reference Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.PubMedCrossRef Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.PubMedCrossRef
41.
go back to reference Lang RM, Addetia K, Miyoshi T, Kebed K, Blitz A, Schreckenberg M, et al. Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? J Am Soc Echocardiogr. 2021;34(4):443–5.PubMedCrossRef Lang RM, Addetia K, Miyoshi T, Kebed K, Blitz A, Schreckenberg M, et al. Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? J Am Soc Echocardiogr. 2021;34(4):443–5.PubMedCrossRef
42.
go back to reference Asch FM, Poilvert N, Abraham T, Jankowski M, Cleve J, Adams M, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ: Cardiovasc Imaging. 2019;12(9):e009303.PubMed Asch FM, Poilvert N, Abraham T, Jankowski M, Cleve J, Adams M, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ: Cardiovasc Imaging. 2019;12(9):e009303.PubMed
43.
44.
go back to reference Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1(1):1–8.CrossRef Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1(1):1–8.CrossRef
45.
go back to reference Nagueh SF, Abraham TP, Aurigemma GP, Bax JJ, Beladan C, Browning A, et al. Interobserver variability in applying American Society of Echocardiography/European Association of Cardiovascular Imaging 2016 guidelines for estimation of left ventricular filling pressure. Circ: Cardiovasc Imaging. 2019;12(1):e008122.PubMed Nagueh SF, Abraham TP, Aurigemma GP, Bax JJ, Beladan C, Browning A, et al. Interobserver variability in applying American Society of Echocardiography/European Association of Cardiovascular Imaging 2016 guidelines for estimation of left ventricular filling pressure. Circ: Cardiovasc Imaging. 2019;12(1):e008122.PubMed
46.
go back to reference Pan C-K, Zhao B-W, Zhang X-X, Pan M, Mao Y-K, Yang Y. Three-dimensional echocardiographic assessment of left ventricular volume in different heart diseases using a fully automated quantification software. World J Clin Cases. 2022;10(13):4050.PubMedPubMedCentralCrossRef Pan C-K, Zhao B-W, Zhang X-X, Pan M, Mao Y-K, Yang Y. Three-dimensional echocardiographic assessment of left ventricular volume in different heart diseases using a fully automated quantification software. World J Clin Cases. 2022;10(13):4050.PubMedPubMedCentralCrossRef
47.
go back to reference Barbier P, Mirea O, Cefalu C, Maltagliati A, Savioli G, Guglielmo M. Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra-and inter-operator, test–retest, and inter-cycle reproducibility. Eur Heart J Cardiovasc Imaging. 2015;16(6):642–52.PubMedCrossRef Barbier P, Mirea O, Cefalu C, Maltagliati A, Savioli G, Guglielmo M. Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra-and inter-operator, test–retest, and inter-cycle reproducibility. Eur Heart J Cardiovasc Imaging. 2015;16(6):642–52.PubMedCrossRef
48.
49.
go back to reference Seetharam K, Brito D, Farjo PD, Sengupta P. The role of artificial intelligence in cardiovascular imaging: state of the art review. Front Cardiovasc Med. 2020;7:618849.PubMedPubMedCentralCrossRef Seetharam K, Brito D, Farjo PD, Sengupta P. The role of artificial intelligence in cardiovascular imaging: state of the art review. Front Cardiovasc Med. 2020;7:618849.PubMedPubMedCentralCrossRef
50.
go back to reference Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–40.PubMedCrossRef Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–40.PubMedCrossRef
51.
go back to reference Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA. 2009;302(2):168–78.PubMedPubMedCentralCrossRef Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA. 2009;302(2):168–78.PubMedPubMedCentralCrossRef
52.
go back to reference Seetharam K, Raina S, Sengupta PP. The role of artificial intelligence in echocardiography. Curr Cardiol Rep. 2020;22(9):99.PubMedCrossRef Seetharam K, Raina S, Sengupta PP. The role of artificial intelligence in echocardiography. Curr Cardiol Rep. 2020;22(9):99.PubMedCrossRef
53.
go back to reference Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiac imaging. US Cardiol Rev. 2019;13(2):110–6.CrossRef Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiac imaging. US Cardiol Rev. 2019;13(2):110–6.CrossRef
54.
go back to reference Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology healthcare innovation council. JACC Cardiovasc Imaging. 2020;13(9):2017–35.PubMedPubMedCentralCrossRef Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology healthcare innovation council. JACC Cardiovasc Imaging. 2020;13(9):2017–35.PubMedPubMedCentralCrossRef
Metadata
Title
Broadening Perspectives of Artificial Intelligence in Echocardiography
Authors
Karthik Seetharam
Harshith Thyagaturu
Gabriel Lora Ferreira
Aditya Patel
Chinmay Patel
Asim Elahi
Roman Pachulski
Jilan Shah
Parvez Mir
Arunita Thodimela
Manya Pala
Zeyar Thet
Yasmin Hamirani
Publication date
04-05-2024
Publisher
Springer Healthcare
Published in
Cardiology and Therapy / Issue 2/2024
Print ISSN: 2193-8261
Electronic ISSN: 2193-6544
DOI
https://doi.org/10.1007/s40119-024-00368-3

Other articles of this Issue 2/2024

Cardiology and Therapy 2/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare