Skip to main content
Top
Published in: Neurocritical Care 1/2020

01-02-2020 | Dystonia | Review

Treatment of Movement Disorder Emergencies in Autoimmune Encephalitis in the Neurosciences ICU

Authors: Farwa Ali, Eelco F. Wijdicks

Published in: Neurocritical Care | Issue 1/2020

Login to get access

Abstract

Immune response against neuronal and glial cell surface and cytosolic antigens is an important cause of encephalitis. It may be triggered by activation of the immune system in response to an infection (para-infectious), cancer (paraneoplastic), or due to a patient’s tendency toward autoimmunity. Antibodies directed toward neuronal cell surface antigens are directly pathogenic, whereas antibodies with intracellular targets may become pathogenic if the antigen is transiently exposed to the cell surface or via activation of cytotoxic T cells. Immune-mediated encephalitis is well recognized and may require intensive care due to status epilepticus, need for invasive ventilation, or dysautonomia. Patients with immune-mediated encephalitis may become critically ill and display clinically complex and challenging to treat movement disorders in over 80% of the cases (Zhang et al. in Neurocrit Care 29(2):264–272, 2018). Treatment options include immunotherapy and symptomatic agents affecting dopamine or acetylcholine neurotransmission. There has been no prior published guidance for management of these movement disorders for the intensivist. Herein, we discuss the immune-mediated encephalitis most likely to cause critical illness, clinical features and mechanisms of movement disorders and propose a management algorithm.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dash D, Ihtisham K, Tripathi M, Tripathi M. Proportion and spectrum of movement disorders in adolescent and adult patients of autoimmune encephalitis of non-neoplastic aetiology. J Clin Neurosci. 2019;59:185–9.PubMedCrossRef Dash D, Ihtisham K, Tripathi M, Tripathi M. Proportion and spectrum of movement disorders in adolescent and adult patients of autoimmune encephalitis of non-neoplastic aetiology. J Clin Neurosci. 2019;59:185–9.PubMedCrossRef
2.
go back to reference Cossu G, Colosimo C. Hyperkinetic movement disorder emergencies. Curr Neurol Neurosci Rep. 2017;17(1):6.PubMedCrossRef Cossu G, Colosimo C. Hyperkinetic movement disorder emergencies. Curr Neurol Neurosci Rep. 2017;17(1):6.PubMedCrossRef
3.
go back to reference Duan B-C, Weng W-C, Lin K-L, et al. Variations of movement disorders in anti-N-methyl-d-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine. 2016;95(37):e4365.PubMedPubMedCentralCrossRef Duan B-C, Weng W-C, Lin K-L, et al. Variations of movement disorders in anti-N-methyl-d-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine. 2016;95(37):e4365.PubMedPubMedCentralCrossRef
4.
go back to reference Baizabal-Carvallo JF, Stocco A, Muscal E, Jankovic J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord. 2013;28(4):543–7.PubMedCrossRef Baizabal-Carvallo JF, Stocco A, Muscal E, Jankovic J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord. 2013;28(4):543–7.PubMedCrossRef
5.
go back to reference Kleinig TJ, Thompson PD, Matar W, et al. The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord. 2008;23(9):1256–61.PubMedCrossRef Kleinig TJ, Thompson PD, Matar W, et al. The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord. 2008;23(9):1256–61.PubMedCrossRef
6.
go back to reference Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.PubMedPubMedCentralCrossRef Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.PubMedPubMedCentralCrossRef
7.
go back to reference Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol. 2015;127–128:91–107.PubMedCrossRef Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol. 2015;127–128:91–107.PubMedCrossRef
8.
go back to reference Comella CL, Leurgans S, Wuu J, Stebbins GT, Chmura T. Dystonia Study Group. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303–12.PubMedCrossRef Comella CL, Leurgans S, Wuu J, Stebbins GT, Chmura T. Dystonia Study Group. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303–12.PubMedCrossRef
9.
go back to reference Dale RC, Merheb V, Pillai S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135(Pt 11):3453–68.PubMedCrossRef Dale RC, Merheb V, Pillai S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135(Pt 11):3453–68.PubMedCrossRef
10.
go back to reference Davies G, Irani SR, Coltart C, et al. Anti-N-methyl-d-aspartate receptor antibodies: a potentially treatable cause of encephalitis in the intensive care unit. Crit Care Med. 2010;38(2):679–82.PubMedCrossRef Davies G, Irani SR, Coltart C, et al. Anti-N-methyl-d-aspartate receptor antibodies: a potentially treatable cause of encephalitis in the intensive care unit. Crit Care Med. 2010;38(2):679–82.PubMedCrossRef
11.
go back to reference Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.PubMedPubMedCentralCrossRef Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.PubMedPubMedCentralCrossRef
12.
go back to reference Sutter R, Ristic A, Rüegg S, Fuhr P. Myoclonus in the critically ill: diagnosis, management, and clinical impact. Clin Neurophysiol. 2016;127(1):67–80.PubMedCrossRef Sutter R, Ristic A, Rüegg S, Fuhr P. Myoclonus in the critically ill: diagnosis, management, and clinical impact. Clin Neurophysiol. 2016;127(1):67–80.PubMedCrossRef
13.
go back to reference Balint B, Jarius S, Nagel S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82(17):1521–8.PubMedCrossRef Balint B, Jarius S, Nagel S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82(17):1521–8.PubMedCrossRef
14.
go back to reference Panzer JA, Anand R, Dalmau J, Lynch DR. Antibodies to dendritic neuronal surface antigens in opsoclonus myoclonus ataxia syndrome. J Neuroimmunol. 2015;15(286):86–92.CrossRef Panzer JA, Anand R, Dalmau J, Lynch DR. Antibodies to dendritic neuronal surface antigens in opsoclonus myoclonus ataxia syndrome. J Neuroimmunol. 2015;15(286):86–92.CrossRef
17.
go back to reference Herken J, Prüss H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;16(8):25. Herken J, Prüss H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;16(8):25.
18.
go back to reference Mikasova L, De Rossi P, Bouchet D, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135(Pt 5):1606–21.PubMedCrossRef Mikasova L, De Rossi P, Bouchet D, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135(Pt 5):1606–21.PubMedCrossRef
19.
20.
go back to reference Varley JA, Webb AJS, Balint B, et al. The Movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry. 2019;90(6):724–6.PubMedCrossRef Varley JA, Webb AJS, Balint B, et al. The Movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry. 2019;90(6):724–6.PubMedCrossRef
21.
go back to reference van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13(5):290–301.PubMedCrossRef van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13(5):290–301.PubMedCrossRef
22.
go back to reference Lang B, Makuch M, Moloney T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry. 2017;88(4):353–61.PubMedCrossRef Lang B, Makuch M, Moloney T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry. 2017;88(4):353–61.PubMedCrossRef
23.
go back to reference Binks SNM, Klein CJ, Waters P, Pittock SJ, Irani SR. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes. J Neurol Neurosurg Psychiatry. 2018;89(5):526–34.PubMedCrossRef Binks SNM, Klein CJ, Waters P, Pittock SJ, Irani SR. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes. J Neurol Neurosurg Psychiatry. 2018;89(5):526–34.PubMedCrossRef
24.
go back to reference Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900.PubMedCrossRef Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900.PubMedCrossRef
26.
go back to reference Iyer RS, Ramakrishnan TCR, Karunakaran Shinto A, Kamaleshwaran KK. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement. Epilepsy Behav Case Rep. 2017;8:47–50.PubMedPubMedCentralCrossRef Iyer RS, Ramakrishnan TCR, Karunakaran Shinto A, Kamaleshwaran KK. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement. Epilepsy Behav Case Rep. 2017;8:47–50.PubMedPubMedCentralCrossRef
27.
go back to reference Striano P. Faciobrachial dystonic attacks: seizures or movement disorder? Ann Neurol. 2011;70(1):179–80 author reply 180.PubMedCrossRef Striano P. Faciobrachial dystonic attacks: seizures or movement disorder? Ann Neurol. 2011;70(1):179–80 author reply 180.PubMedCrossRef
28.
go back to reference Damato V, Balint B, Kienzler A-K, Irani SR. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord. 2018;33(9):1376–89.PubMedPubMedCentralCrossRef Damato V, Balint B, Kienzler A-K, Irani SR. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord. 2018;33(9):1376–89.PubMedPubMedCentralCrossRef
29.
go back to reference Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–92.PubMedPubMedCentralCrossRef Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–92.PubMedPubMedCentralCrossRef
30.
go back to reference Balint B, Vincent A, Meinck H-M, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13–36.PubMedCrossRef Balint B, Vincent A, Meinck H-M, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13–36.PubMedCrossRef
31.
go back to reference Balint B, Bhatia KP. Stiff person syndrome and other immune-mediated movement disorders—new insights. Curr Opin Neurol. 2016;29(4):496–506.PubMedCrossRef Balint B, Bhatia KP. Stiff person syndrome and other immune-mediated movement disorders—new insights. Curr Opin Neurol. 2016;29(4):496–506.PubMedCrossRef
32.
go back to reference Werner C, Pauli M, Doose S, et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain. 2016;139(Pt 2):365–79.PubMedCrossRef Werner C, Pauli M, Doose S, et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain. 2016;139(Pt 2):365–79.PubMedCrossRef
34.
go back to reference Bien CG, Vincent A, Barnett MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–38.PubMedCrossRef Bien CG, Vincent A, Barnett MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–38.PubMedCrossRef
35.
go back to reference Cunningham MW, Cox CJ. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta Physiol (Oxf). 2016;216(1):90–100.CrossRef Cunningham MW, Cox CJ. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta Physiol (Oxf). 2016;216(1):90–100.CrossRef
36.
37.
go back to reference Church AJ, Dale RC, Giovannoni G. Anti-basal ganglia antibodies: a possible diagnostic utility in idiopathic movement disorders? Arch Dis Child. 2004;89(7):611–4.PubMedPubMedCentralCrossRef Church AJ, Dale RC, Giovannoni G. Anti-basal ganglia antibodies: a possible diagnostic utility in idiopathic movement disorders? Arch Dis Child. 2004;89(7):611–4.PubMedPubMedCentralCrossRef
38.
go back to reference Carecchio M, Cantello R, Comi C. Revisiting the molecular mechanism of neurological manifestations in antiphospholipid syndrome: beyond vascular damage. J Immunol Res. 2014;13(2014):239398. Carecchio M, Cantello R, Comi C. Revisiting the molecular mechanism of neurological manifestations in antiphospholipid syndrome: beyond vascular damage. J Immunol Res. 2014;13(2014):239398.
39.
go back to reference Zhang Y, Liu G, Jiang M, Chen W, He Y, Su Y. Clinical characteristics and prognosis of severe anti-N-methyl-d-aspartate receptor encephalitis patients. Neurocrit Care. 2018;29(2):264–72.PubMedCrossRef Zhang Y, Liu G, Jiang M, Chen W, He Y, Su Y. Clinical characteristics and prognosis of severe anti-N-methyl-d-aspartate receptor encephalitis patients. Neurocrit Care. 2018;29(2):264–72.PubMedCrossRef
40.
go back to reference Harutyunyan G, Hauer L, Dünser MW, et al. Risk factors for intensive care unit admission in patients with autoimmune encephalitis. Front Immunol. 2017;28(8):835.CrossRef Harutyunyan G, Hauer L, Dünser MW, et al. Risk factors for intensive care unit admission in patients with autoimmune encephalitis. Front Immunol. 2017;28(8):835.CrossRef
41.
go back to reference Cohen J, Sotoca J, Gandhi S, et al. Autoimmune encephalitis: a costly condition. Neurology. 2019;92(9):e964–e972.PubMed Cohen J, Sotoca J, Gandhi S, et al. Autoimmune encephalitis: a costly condition. Neurology. 2019;92(9):e964–e972.PubMed
42.
go back to reference Termsarasab P, Frucht SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord. 2017;28(4):10.CrossRef Termsarasab P, Frucht SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord. 2017;28(4):10.CrossRef
43.
go back to reference McKeon A. The importance of early and sustained treatment of a common autoimmune encephalitis. Lancet Neurol. 2013;12(2):123–5.PubMedCrossRef McKeon A. The importance of early and sustained treatment of a common autoimmune encephalitis. Lancet Neurol. 2013;12(2):123–5.PubMedCrossRef
44.
go back to reference Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018;141(2):348–56.PubMedCrossRef Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018;141(2):348–56.PubMedCrossRef
46.
go back to reference Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology. 2013;154(3):993–1007.PubMedCrossRef Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology. 2013;154(3):993–1007.PubMedCrossRef
47.
go back to reference Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol. 2015;11(2):80–9.PubMedCrossRef Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol. 2015;11(2):80–9.PubMedCrossRef
48.
go back to reference Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011;76(3):294–300.PubMedPubMedCentralCrossRef Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011;76(3):294–300.PubMedPubMedCentralCrossRef
49.
go back to reference Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol. 2014;76(2):168–84.PubMedPubMedCentralCrossRef Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol. 2014;76(2):168–84.PubMedPubMedCentralCrossRef
50.
go back to reference Scheibe F, Prüss H, Mengel AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology. 2017;88(4):366–70.PubMedCrossRef Scheibe F, Prüss H, Mengel AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology. 2017;88(4):366–70.PubMedCrossRef
51.
go back to reference Lee W-J, Lee S-T, Moon J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics. 2016;13(4):824–32.PubMedPubMedCentralCrossRef Lee W-J, Lee S-T, Moon J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics. 2016;13(4):824–32.PubMedPubMedCentralCrossRef
52.
go back to reference Shin Y-W, Lee S-T, Park K-I, et al. Treatment strategies for autoimmune encephalitis. Ther Adv Neurol Disord. 2018;11:1756285617722347.PubMed Shin Y-W, Lee S-T, Park K-I, et al. Treatment strategies for autoimmune encephalitis. Ther Adv Neurol Disord. 2018;11:1756285617722347.PubMed
53.
54.
go back to reference Robottom BJ, Weiner WJ, Factor SA. Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol. 2011;68(5):567–72.PubMedCrossRef Robottom BJ, Weiner WJ, Factor SA. Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol. 2011;68(5):567–72.PubMedCrossRef
55.
go back to reference Robottom BJ, Factor SA, Weiner WJ. Movement disorders emergencies. Part 2: hyperkinetic disorders. Arch Neurol. 2011;68(6):719–24.PubMedCrossRef Robottom BJ, Factor SA, Weiner WJ. Movement disorders emergencies. Part 2: hyperkinetic disorders. Arch Neurol. 2011;68(6):719–24.PubMedCrossRef
56.
go back to reference Schaefer SM, Rostami R, Greer DM. Movement disorders in the intensive care unit. Semin Neurol. 2016;36(6):607–14.PubMedCrossRef Schaefer SM, Rostami R, Greer DM. Movement disorders in the intensive care unit. Semin Neurol. 2016;36(6):607–14.PubMedCrossRef
57.
go back to reference Hughes JD, Rabinstein AA. Early diagnosis of paroxysmal sympathetic hyperactivity in the ICU. Neurocrit Care. 2014;20(3):454–9.PubMedCrossRef Hughes JD, Rabinstein AA. Early diagnosis of paroxysmal sympathetic hyperactivity in the ICU. Neurocrit Care. 2014;20(3):454–9.PubMedCrossRef
58.
go back to reference Relja M, Miletić V. When movement disorders hurt: addressing pain in hyperkinetic disorders. Parkinsonism Relat Disord. 2017;44:110–3.PubMedCrossRef Relja M, Miletić V. When movement disorders hurt: addressing pain in hyperkinetic disorders. Parkinsonism Relat Disord. 2017;44:110–3.PubMedCrossRef
59.
go back to reference Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017;82(1):79–92.PubMedCrossRef Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017;82(1):79–92.PubMedCrossRef
60.
go back to reference Mittal MK, Rabinstein AA, Hocker SE, Pittock SJ, Wijdicks EFM, McKeon A. Autoimmune encephalitis in the ICU: analysis of phenotypes, serologic findings, and outcomes. Neurocrit Care. 2016;24(2):240–50.PubMedCrossRef Mittal MK, Rabinstein AA, Hocker SE, Pittock SJ, Wijdicks EFM, McKeon A. Autoimmune encephalitis in the ICU: analysis of phenotypes, serologic findings, and outcomes. Neurocrit Care. 2016;24(2):240–50.PubMedCrossRef
61.
go back to reference Liu H, Jian M, Liang F, Yue H, Han R. Anti-N-methyl-d-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations. BMC Anesthesiol. 2015;16(15):150.CrossRef Liu H, Jian M, Liang F, Yue H, Han R. Anti-N-methyl-d-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations. BMC Anesthesiol. 2015;16(15):150.CrossRef
62.
go back to reference Solt K, Eger EI, Raines DE. Differential modulation of human N-methyl-d-aspartate receptors by structurally diverse general anesthetics. Anesth Analg. 2006;102(5):1407–11.PubMedCrossRef Solt K, Eger EI, Raines DE. Differential modulation of human N-methyl-d-aspartate receptors by structurally diverse general anesthetics. Anesth Analg. 2006;102(5):1407–11.PubMedCrossRef
63.
go back to reference Hollman JH, Brey RH, Bang TJ, Kaufman KR. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. Gait Posture. 2007;26(2):289–94.PubMedCrossRef Hollman JH, Brey RH, Bang TJ, Kaufman KR. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. Gait Posture. 2007;26(2):289–94.PubMedCrossRef
64.
go back to reference Sonner JM, Zhang Y, Stabernack C, Abaigar W, Xing Y, Laster MJ. GABA(A) receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg. 2003;96(3):706–12 table of contents.PubMed Sonner JM, Zhang Y, Stabernack C, Abaigar W, Xing Y, Laster MJ. GABA(A) receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg. 2003;96(3):706–12 table of contents.PubMed
65.
go back to reference Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.PubMedCrossRef Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.PubMedCrossRef
66.
go back to reference Kozinn J, Mao L, Arora A, Yang L, Fibuch EE, Wang JQ. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology. 2006;105(6):1182–91.PubMedCrossRef Kozinn J, Mao L, Arora A, Yang L, Fibuch EE, Wang JQ. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology. 2006;105(6):1182–91.PubMedCrossRef
67.
go back to reference Lapébie F-X, Kennel C, Magy L, et al. Potential side effect of propofol and sevoflurane for anesthesia of anti-NMDA-R encephalitis. BMC Anesthesiol. 2014;16(14):5.CrossRef Lapébie F-X, Kennel C, Magy L, et al. Potential side effect of propofol and sevoflurane for anesthesia of anti-NMDA-R encephalitis. BMC Anesthesiol. 2014;16(14):5.CrossRef
68.
go back to reference Hemphill S, McMenamin L, Bellamy MC, Hopkins PM. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth. 2019;122(4):448–59.PubMedPubMedCentralCrossRef Hemphill S, McMenamin L, Bellamy MC, Hopkins PM. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth. 2019;122(4):448–59.PubMedPubMedCentralCrossRef
70.
go back to reference Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.PubMedPubMedCentralCrossRef Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.PubMedPubMedCentralCrossRef
71.
go back to reference Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC. Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci. 2011;31(44):15727–31.PubMedPubMedCentralCrossRef Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC. Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci. 2011;31(44):15727–31.PubMedPubMedCentralCrossRef
72.
go back to reference Seifi A, Kitchen DL. Management of dyskinesia in anti-NMDAR encephalitis with tramadol. Clin Neurol Neurosurg. 2016;147:105–7.PubMedCrossRef Seifi A, Kitchen DL. Management of dyskinesia in anti-NMDAR encephalitis with tramadol. Clin Neurol Neurosurg. 2016;147:105–7.PubMedCrossRef
73.
go back to reference Potschka H, Friderichs E, Löscher W. Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. Br J Pharmacol. 2000;131(2):203–12.PubMedPubMedCentralCrossRef Potschka H, Friderichs E, Löscher W. Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. Br J Pharmacol. 2000;131(2):203–12.PubMedPubMedCentralCrossRef
74.
go back to reference Mohammad SS, Jones H, Hong M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol. 2016;58(4):376–84.PubMedCrossRef Mohammad SS, Jones H, Hong M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol. 2016;58(4):376–84.PubMedCrossRef
75.
go back to reference Jankovic J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin Pharmacother. 2016;17(18):2461–70.PubMedCrossRef Jankovic J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin Pharmacother. 2016;17(18):2461–70.PubMedCrossRef
76.
go back to reference Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.PubMedCrossRef Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.PubMedCrossRef
77.
go back to reference Peckham AM, Nicewonder JA. VMAT2 inhibitors for tardive dyskinesia-practice implications. J Pharm Pract. 2018;1:897190018756512. Peckham AM, Nicewonder JA. VMAT2 inhibitors for tardive dyskinesia-practice implications. J Pharm Pract. 2018;1:897190018756512.
78.
go back to reference Seeberger LC, Hauser RA. Valbenazine for the treatment of tardive dyskinesia. Expert Opin Pharmacother. 2017;18(12):1279–87.PubMedCrossRef Seeberger LC, Hauser RA. Valbenazine for the treatment of tardive dyskinesia. Expert Opin Pharmacother. 2017;18(12):1279–87.PubMedCrossRef
79.
go back to reference Jankovic J. An update on new and unique uses of botulinum toxin in movement disorders. Toxicon. 2018;1(147):84–8.CrossRef Jankovic J. An update on new and unique uses of botulinum toxin in movement disorders. Toxicon. 2018;1(147):84–8.CrossRef
80.
go back to reference Hallett M. Mechanism of action of botulinum neurotoxin: unexpected consequences. Toxicon. 2018;1(147):73–6.CrossRef Hallett M. Mechanism of action of botulinum neurotoxin: unexpected consequences. Toxicon. 2018;1(147):73–6.CrossRef
82.
go back to reference Mohammad SS, Dale RC. Principles and approaches to the treatment of immune-mediated movement disorders. Eur J Paediatr Neurol. 2018;22(2):292–300.PubMedCrossRef Mohammad SS, Dale RC. Principles and approaches to the treatment of immune-mediated movement disorders. Eur J Paediatr Neurol. 2018;22(2):292–300.PubMedCrossRef
83.
Metadata
Title
Treatment of Movement Disorder Emergencies in Autoimmune Encephalitis in the Neurosciences ICU
Authors
Farwa Ali
Eelco F. Wijdicks
Publication date
01-02-2020
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2020
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-019-00875-5

Other articles of this Issue 1/2020

Neurocritical Care 1/2020 Go to the issue