Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2014

Open Access 01-12-2014 | Research

Dual echo positive contrast bSSFP for real-time visualization of passive devices duringmagnetic resonance guided cardiovascular catheterization

Authors: Adrienne E Campbell-Washburn, Toby Rogers, Hui Xue, Michael S Hansen, Robert J Lederman, Anthony Z Faranesh

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2014

Login to get access

Abstract

Background

Cardiovascular magnetic resonance (CMR) guided cardiovascular catheterizations can potentially reduce ionizing radiation exposure and enable new interventions. Commercially available paramagnetic X-Ray devices create a small signal void in CMR images, which is ambiguous and insufficient to guide catheterization procedures. This work aims to improve real-time CMR of off-the-shelf X-Ray devices by developing a real-time positive contrast sequence with color overlay of the device onto anatomy.

Methods

A dual-echo bSSFP sequence was used to generate both a dephased positive contrast image and bSSFP image simultaneously. A variable flip angle scheme was implemented to reduce the specific absorption rate (SAR) and hence device heating. Image processing was used to isolate the device from background signal, and the device was overlaid in color on the anatomy, mimicking active device visualization. Proof-of-concept experiments were performed using a commercially available nitinol guidewire for left heart catheterization in Yorkshire swine.

Results

The dual echo pulse sequence generated a temporal resolution of 175 ms (5.7 frames/second) with GRAPPA acceleration factor 4. Image processing was performed in real-time and color overlay of the device on the anatomy was displayed to the operator with no latency. The color overlay accurately depicted the guidewire location, with minimal background contamination, during left heart catheterization.

Conclusions

The ability to effectively visualize commercially available X-Ray devices during CMR-guided cardiovascular catheterizations, combined with safe low-SAR pulse sequences, could potentially expedite the clinical translation of interventional CMR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, Baker E: Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003, 362: 1877-82. 10.1016/S0140-6736(03)14956-2.CrossRefPubMed Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, Baker E: Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003, 362: 1877-82. 10.1016/S0140-6736(03)14956-2.CrossRefPubMed
2.
go back to reference Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ: Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson. 2008, 10: 62-10.1186/1532-429X-10-62.PubMedCentralCrossRefPubMed Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ: Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson. 2008, 10: 62-10.1186/1532-429X-10-62.PubMedCentralCrossRefPubMed
4.
go back to reference Andreassi MG, Cioppa A, Manfredi S, Palmieri C, Botto N, Picano E: Acute chromosomal DNA damage in human lymphocytes after radiation exposure in invasive cardiovascular procedures. Eur Heart J. 2007, 28: 2195-9. 10.1093/eurheartj/ehm225.CrossRefPubMed Andreassi MG, Cioppa A, Manfredi S, Palmieri C, Botto N, Picano E: Acute chromosomal DNA damage in human lymphocytes after radiation exposure in invasive cardiovascular procedures. Eur Heart J. 2007, 28: 2195-9. 10.1093/eurheartj/ehm225.CrossRefPubMed
5.
go back to reference McVeigh ER, Guttman MA, Kellman P, Raval AN, Lederman RJ: Real-time, interactive MRI for cardiovascular interventions. Acad Radiol. 2005, 12: 1121-7. 10.1016/j.acra.2005.05.024.PubMedCentralCrossRefPubMed McVeigh ER, Guttman MA, Kellman P, Raval AN, Lederman RJ: Real-time, interactive MRI for cardiovascular interventions. Acad Radiol. 2005, 12: 1121-7. 10.1016/j.acra.2005.05.024.PubMedCentralCrossRefPubMed
6.
go back to reference Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, Schenke WH, Wright VJ, Grant LP, Kellman P, Kocaturk O, Lederman RJ: Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013, 34: 380-9. 10.1093/eurheartj/ehs189.PubMedCentralCrossRefPubMed Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, Schenke WH, Wright VJ, Grant LP, Kellman P, Kocaturk O, Lederman RJ: Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013, 34: 380-9. 10.1093/eurheartj/ehs189.PubMedCentralCrossRefPubMed
7.
go back to reference Tzifa A, Krombach GA, Krümer N, Kräger S, Sch Tte A, von Walter M, Schaeffter T, Qureshi S, Krasemann T, Rosenthal E, Schwartz CA, Varma G, Buhl A, Kohlmeier A, Bücker A, Günther RW, Razavi R: Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010, 3: 585-92. 10.1161/CIRCINTERVENTIONS.110.957209.CrossRefPubMed Tzifa A, Krombach GA, Krümer N, Kräger S, Sch Tte A, von Walter M, Schaeffter T, Qureshi S, Krasemann T, Rosenthal E, Schwartz CA, Varma G, Buhl A, Kohlmeier A, Bücker A, Günther RW, Razavi R: Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010, 3: 585-92. 10.1161/CIRCINTERVENTIONS.110.957209.CrossRefPubMed
8.
go back to reference Khan SN, Rapacchi S, Levi DS, Finn JP: Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla. J Cardiovasc Magn Reson. 2013, 15: 54-10.1186/1532-429X-15-54.PubMedCentralCrossRefPubMed Khan SN, Rapacchi S, Levi DS, Finn JP: Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla. J Cardiovasc Magn Reson. 2013, 15: 54-10.1186/1532-429X-15-54.PubMedCentralCrossRefPubMed
9.
10.
go back to reference Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, Ozturk C, Lederman RJ, Kocaturk O: MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson. 2012, 14: 38-10.1186/1532-429X-14-38.PubMedCentralCrossRefPubMed Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, Ozturk C, Lederman RJ, Kocaturk O: MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson. 2012, 14: 38-10.1186/1532-429X-14-38.PubMedCentralCrossRefPubMed
11.
go back to reference Seppenwoolde JH, Viergever MA, Bakker CJ: Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med. 2003, 50: 784-90. 10.1002/mrm.10574.CrossRefPubMed Seppenwoolde JH, Viergever MA, Bakker CJ: Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med. 2003, 50: 784-90. 10.1002/mrm.10574.CrossRefPubMed
12.
go back to reference Koktzoglou I, Li D, Dharmakumar R: Dephased FLAPS for improved visualization of susceptibility-shifted passive devices for real-time interventional MRI. Phys Med Biol. 2007, 52: N277-86. 10.1088/0031-9155/52/13/N01.CrossRefPubMed Koktzoglou I, Li D, Dharmakumar R: Dephased FLAPS for improved visualization of susceptibility-shifted passive devices for real-time interventional MRI. Phys Med Biol. 2007, 52: N277-86. 10.1088/0031-9155/52/13/N01.CrossRefPubMed
13.
go back to reference Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA: Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med. 2006, 55: 126-35. 10.1002/mrm.20739.CrossRefPubMed Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA: Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med. 2006, 55: 126-35. 10.1002/mrm.20739.CrossRefPubMed
14.
go back to reference Bieri O, Patil S, Quick HH, Scheffler K: Morphing steady-state free precession. Magn Reson Med. 2007, 58: 1242-8. 10.1002/mrm.21421.CrossRefPubMed Bieri O, Patil S, Quick HH, Scheffler K: Morphing steady-state free precession. Magn Reson Med. 2007, 58: 1242-8. 10.1002/mrm.21421.CrossRefPubMed
15.
go back to reference Frahm J, Merboldt KD, Hänicke W: Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med. 1988, 6: 474-80. 10.1002/mrm.1910060412.CrossRefPubMed Frahm J, Merboldt KD, Hänicke W: Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med. 1988, 6: 474-80. 10.1002/mrm.1910060412.CrossRefPubMed
16.
go back to reference Srinivasan S, Ennis DB: Variable flip angle balanced steady-state free precession for lower SAR or higher contrast cardiac cine imaging.Magn Reson Med. 2013. [Epub ahead of print]. doi:10.1002/mrm.24764., Srinivasan S, Ennis DB: Variable flip angle balanced steady-state free precession for lower SAR or higher contrast cardiac cine imaging.Magn Reson Med. 2013. [Epub ahead of print]. doi:10.1002/mrm.24764.,
17.
go back to reference Paul D, Zaitsev M: Improved SNR in linear reordered 2D bSSFP imaging using variable flip angles. Magn Reson Imaging. 2009, 27: 933-41. 10.1016/j.mri.2009.01.021.CrossRefPubMed Paul D, Zaitsev M: Improved SNR in linear reordered 2D bSSFP imaging using variable flip angles. Magn Reson Imaging. 2009, 27: 933-41. 10.1016/j.mri.2009.01.021.CrossRefPubMed
18.
go back to reference Dharmakumar R, Koktzoglou I, Li D: Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol. 2006, 51: 4201-15. 10.1088/0031-9155/51/17/006.CrossRefPubMed Dharmakumar R, Koktzoglou I, Li D: Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol. 2006, 51: 4201-15. 10.1088/0031-9155/51/17/006.CrossRefPubMed
19.
go back to reference Cukur T, Yamada M, Overall WR, Yang P, Nishimura DG: Positive contrast with alternating repetition time SSFP (PARTS): a fast imaging technique for SPIO-labeled cells. Magn Reson Med. 2010, 63: 427-37. 10.1002/mrm.22241.PubMedCentralCrossRefPubMed Cukur T, Yamada M, Overall WR, Yang P, Nishimura DG: Positive contrast with alternating repetition time SSFP (PARTS): a fast imaging technique for SPIO-labeled cells. Magn Reson Med. 2010, 63: 427-37. 10.1002/mrm.22241.PubMedCentralCrossRefPubMed
20.
go back to reference Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T: Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med. 2008, 60: 595-603. 10.1002/mrm.21478.PubMedCentralCrossRefPubMed Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T: Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med. 2008, 60: 595-603. 10.1002/mrm.21478.PubMedCentralCrossRefPubMed
21.
go back to reference Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL: Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med. 2007, 58: 1072-7. 10.1002/mrm.21399.CrossRefPubMed Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL: Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med. 2007, 58: 1072-7. 10.1002/mrm.21399.CrossRefPubMed
22.
go back to reference Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J: On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001, 13: 105-14. 10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0.CrossRefPubMed Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J: On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001, 13: 105-14. 10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0.CrossRefPubMed
23.
go back to reference Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000, 12: 79-85. 10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T.CrossRefPubMed Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000, 12: 79-85. 10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T.CrossRefPubMed
24.
go back to reference Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H: RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med. 2004, 52: 1200-6. 10.1002/mrm.20246.CrossRefPubMed Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H: RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med. 2004, 52: 1200-6. 10.1002/mrm.20246.CrossRefPubMed
25.
go back to reference Seppenwoolde JH, Vincken KL, Bakker CJ: White-marker imaging separating magnetic susceptibility effects from partial volume effects. Magn Reson Med. 2007, 58: 605-9. 10.1002/mrm.21304.CrossRefPubMed Seppenwoolde JH, Vincken KL, Bakker CJ: White-marker imaging separating magnetic susceptibility effects from partial volume effects. Magn Reson Med. 2007, 58: 605-9. 10.1002/mrm.21304.CrossRefPubMed
26.
go back to reference George AK, Derbyshire JA, Saybasili H, Saikus CE, Kocaturk O, Guttman MA, McVeigh ER, Lederman RJ, Faranesh AZ: Visualization of active devices and automatic slice repositioning ("snapTo") for MRI-guided interventions. Magn Reson Med. 2010, 63: 1070-9. 10.1002/mrm.22307.PubMedCentralCrossRefPubMed George AK, Derbyshire JA, Saybasili H, Saikus CE, Kocaturk O, Guttman MA, McVeigh ER, Lederman RJ, Faranesh AZ: Visualization of active devices and automatic slice repositioning ("snapTo") for MRI-guided interventions. Magn Reson Med. 2010, 63: 1070-9. 10.1002/mrm.22307.PubMedCentralCrossRefPubMed
Metadata
Title
Dual echo positive contrast bSSFP for real-time visualization of passive devices duringmagnetic resonance guided cardiovascular catheterization
Authors
Adrienne E Campbell-Washburn
Toby Rogers
Hui Xue
Michael S Hansen
Robert J Lederman
Anthony Z Faranesh
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2014
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-014-0088-7

Other articles of this Issue 1/2014

Journal of Cardiovascular Magnetic Resonance 1/2014 Go to the issue