Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Dosimetric impact of tumor treating field (TTField) transducer arrays onto treatment plans for glioblastomas – a planning study

Authors: Christoph Straube, Markus Oechsner, Severin Kampfer, Sophia Scharl, Friederike Schmidt-Graf, Jan J. Wilkens, Stephanie E. Combs

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Tumor-Treating Fields (TTFields) are a novel treatment strategy for glioblastoma (GBM) that is approved for the use concomitantly to adjuvant chemotherapy. Preclinical data suggest a synergistic interaction of TTFields and radiotherapy (RT). However, the dosimetric uncertainties caused by the highly dense arrays have led to caution of applying the TTF setup during RT.

Methods

In a RW3 slab phantom we compared the MV- and kV-CT based planned dose with the measured dose. VMAT-plans were optimized on MV-CTs of an Alderson head phantom without TTF arrays and then re-calculated on the same phantom equipped with TTF arrays. Dose at organs at risk (OAR) and target volumes (PTVs) were compared.

Results

Measurements at a depth of 2, 3 and 4 cm of a RW 3 slab phantom show an attenuation due to TTField arrays of 3.4, 3.7 and 2.7% respectively. This was in-line with calculated attenuations based on MV-CT (1.2, 2.5 and 2.5%) but not with the attenuation expected from kV-CT based calculations (7.1, 8.2 and 8.6%). Consecutive MV-CT based VMAT planning and re-calculation reveals, that the conformity and homogeneity are not affected by the presence of TTField arrays. The dose at organs at risk (OAR) can show increases or decreases by < 0.5 Gy, which should be considered especially in cases next to the scull base.

Conclusion

MV-CT based dose calculation results in reliable dose distributions also in the presence of TTField arrays. There is a small but clinically not relevant interaction between the TTField arrays and VMAT dose application. Thus, daily replacement of TTField arrays is not necessary in regard to deeply located OARs. RT is feasible, when a VMAT treatment plan is optimized to an array free planning CT. As the biologic effect of a concomitant treatment especially on OARs is currently unknown, a concomitant treatment should be performed only within clinical trials.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64:3288–95.CrossRefPubMed Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64:3288–95.CrossRefPubMed
5.
go back to reference Bower M, Waxman J. Central nervous system cancers. Lect Notes Oncol. 2011;2011:96–7. Bower M, Waxman J. Central nervous system cancers. Lect Notes Oncol. 2011;2011:96–7.
16.
go back to reference Knöös T, Nilsson M, Ahlgren L. A method for conversion of Hounsfield number to electron density and prediction of macroscopic pair production cross-sections. Radiother Oncol. 1986;5:337–45.CrossRefPubMed Knöös T, Nilsson M, Ahlgren L. A method for conversion of Hounsfield number to electron density and prediction of macroscopic pair production cross-sections. Radiother Oncol. 1986;5:337–45.CrossRefPubMed
17.
go back to reference Duerinckx AJ, Macovski A. Nonlinear polychromatic and noise artifacts in x-ray computed tomography images. J Comput Assist Tomogr. 1979;3:519–26.CrossRefPubMed Duerinckx AJ, Macovski A. Nonlinear polychromatic and noise artifacts in x-ray computed tomography images. J Comput Assist Tomogr. 1979;3:519–26.CrossRefPubMed
20.
go back to reference Held M, Cremers F, Sneed PK, Braunstein S, Fogh SE, Nakamura J, et al. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments. J Appl Clin Med Phys. 2016;17:279–90.CrossRefPubMed Held M, Cremers F, Sneed PK, Braunstein S, Fogh SE, Nakamura J, et al. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments. J Appl Clin Med Phys. 2016;17:279–90.CrossRefPubMed
22.
go back to reference Kathirvel M, Subramanian S, Clivio A, Arun G, Fogliata A, Nicolini G, et al. Critical appraisal of the accuracy of Acuros-XB and anisotropic analytical algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans. Radiat Oncol. 2013;8:1–9. https://doi.org/10.1186/1748-717X-8-140.CrossRef Kathirvel M, Subramanian S, Clivio A, Arun G, Fogliata A, Nicolini G, et al. Critical appraisal of the accuracy of Acuros-XB and anisotropic analytical algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans. Radiat Oncol. 2013;8:1–9. https://​doi.​org/​10.​1186/​1748-717X-8-140.CrossRef
Metadata
Title
Dosimetric impact of tumor treating field (TTField) transducer arrays onto treatment plans for glioblastomas – a planning study
Authors
Christoph Straube
Markus Oechsner
Severin Kampfer
Sophia Scharl
Friederike Schmidt-Graf
Jan J. Wilkens
Stephanie E. Combs
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-0976-3

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue