Skip to main content
Top
Published in: Journal of Gastroenterology 4/2014

01-04-2014 | Review

DNA transfer in the gastric pathogen Helicobacter pylori

Authors: Esther Fernandez-Gonzalez, Steffen Backert

Published in: Journal of Gastroenterology | Issue 4/2014

Login to get access

Abstract

The gastric pathogen Helicobacter pylori is one of the most genetically diverse bacteria. Recombination and DNA transfer contribute to its genetic variability and enhance host adaptation. Among the strategies described to increase genetic diversity in bacteria, DNA transfer by conjugation is one of the best characterized. Using this mechanism, a fragment of DNA from a donor cell can be transferred to a recipient, always mediated by a conjugative nucleoprotein complex, which is evolutionarily related to type IV secretion systems (T4SSs). Interestingly, the H. pylori chromosomes can encode up to four T4SSs, including the cagPAI, comB, tfs3, and tfs4 genes, some of which are known to promote chronic H. pylori infection. The T4SS encoded by the cagPAI mediates the injection of the effector protein CagA and proinflammatory signaling, and the comB system is involved in DNA uptake from the environment. However, the role of tfs3 and tfs4 is not yet clear. The presence of a functional XerD tyrosine recombinase and 5′AAAGAATG-3′ border sequences as well as two putative conjugative relaxases (Rlx1 and Rlx2), a coupling protein (TraG), and a chromosomal region carrying a putative origin of transfer (oriT) suggest the existence of a DNA transfer apparatus in tfs4. Moreover, a conjugation-like DNA transfer mechanism in H. pylori has already been described in vitro, but whether this occurs in vivo is still unknown. Some extrachromosomal plasmids and phages are also present in various H. pylori strains. Genetic exchange among plasmids and chromosomes, and involved DNA mobilization events, could explain part of H. pylori’s genetic diversity. Here, we review our knowledge about the possible DNA transfer mechanisms in H. pylori and its implications in bacterial adaptation to the host environment.
Literature
1.
4.
go back to reference Alm RA, Trust TJ. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med (Berl). 1999;77(12):834–46.CrossRef Alm RA, Trust TJ. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med (Berl). 1999;77(12):834–46.CrossRef
5.
go back to reference Salama N, et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA. 2000;97(26):14668–73.PubMedCentralPubMedCrossRef Salama N, et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA. 2000;97(26):14668–73.PubMedCentralPubMedCrossRef
6.
go back to reference Israel DA, et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA. 2001;98(25):14625–30.PubMedCentralPubMedCrossRef Israel DA, et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA. 2001;98(25):14625–30.PubMedCentralPubMedCrossRef
7.
go back to reference Suerbaum S, Achtman M. Helicobacter pylori: recombination, population structure and human migrations. Int J Med Microbiol. 2004;294(2–3):133–9.PubMedCrossRef Suerbaum S, Achtman M. Helicobacter pylori: recombination, population structure and human migrations. Int J Med Microbiol. 2004;294(2–3):133–9.PubMedCrossRef
12.
go back to reference Heintschel von Heinegg E, et al. Characterisation of a Helicobacter pylori phage (HP1). J Med Microbiol. 1993;38(4):245–9.PubMedCrossRef Heintschel von Heinegg E, et al. Characterisation of a Helicobacter pylori phage (HP1). J Med Microbiol. 1993;38(4):245–9.PubMedCrossRef
13.
go back to reference Schmid EN, et al. Bacteriophages in Helicobacter (Campylobacter) pylori. J Med Microbiol. 1990;32(2):101–4.PubMedCrossRef Schmid EN, et al. Bacteriophages in Helicobacter (Campylobacter) pylori. J Med Microbiol. 1990;32(2):101–4.PubMedCrossRef
15.
go back to reference Uchiyama J, et al. Complete genome sequences of two Helicobacter pylori bacteriophages isolated from Japanese patients. J Virol. 2012;86(20):11400–1.PubMedCentralPubMedCrossRef Uchiyama J, et al. Complete genome sequences of two Helicobacter pylori bacteriophages isolated from Japanese patients. J Virol. 2012;86(20):11400–1.PubMedCentralPubMedCrossRef
16.
17.
20.
go back to reference Schroder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid. 2005;54(1):1–25.PubMedCrossRef Schroder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid. 2005;54(1):1–25.PubMedCrossRef
22.
go back to reference Llosa M, et al. New perspectives into bacterial DNA transfer to human cells. Trends Microbiol. 2012;20(8):355–9.PubMedCrossRef Llosa M, et al. New perspectives into bacterial DNA transfer to human cells. Trends Microbiol. 2012;20(8):355–9.PubMedCrossRef
23.
go back to reference Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9(2):207–17.PubMedCrossRef Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9(2):207–17.PubMedCrossRef
24.
go back to reference Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 2003;1(2):137–49.PubMedCrossRef Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 2003;1(2):137–49.PubMedCrossRef
25.
go back to reference Karnholz A, et al. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol. 2006;188(3):882–93.PubMedCentralPubMedCrossRef Karnholz A, et al. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol. 2006;188(3):882–93.PubMedCentralPubMedCrossRef
26.
go back to reference Covacci A, et al. Helicobacter pylori virulence and genetic geography. Science. 1999;284(5418):1328–33.PubMedCrossRef Covacci A, et al. Helicobacter pylori virulence and genetic geography. Science. 1999;284(5418):1328–33.PubMedCrossRef
27.
go back to reference Backert S, et al. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 2008;16(9):409–13.PubMedCrossRef Backert S, et al. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 2008;16(9):409–13.PubMedCrossRef
28.
go back to reference Kwok T, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449(7164):862–6.PubMedCrossRef Kwok T, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449(7164):862–6.PubMedCrossRef
29.
go back to reference Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008;10(8):1573–81.PubMedCrossRef Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008;10(8):1573–81.PubMedCrossRef
30.
go back to reference Olbermann P, et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 2010;6(8):e1001069.PubMedCentralPubMedCrossRef Olbermann P, et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 2010;6(8):e1001069.PubMedCentralPubMedCrossRef
31.
go back to reference Hofreuter D, et al. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol. 2001;41(2):379–91.PubMedCrossRef Hofreuter D, et al. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol. 2001;41(2):379–91.PubMedCrossRef
34.
go back to reference Fischer W, et al. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 2010;38(18):6089–101.PubMedCentralPubMedCrossRef Fischer W, et al. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 2010;38(18):6089–101.PubMedCentralPubMedCrossRef
35.
go back to reference Solomon JM, Grossman AD. Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 1996;12(4):150–5.PubMedCrossRef Solomon JM, Grossman AD. Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 1996;12(4):150–5.PubMedCrossRef
36.
go back to reference Biswas GD, et al. Factors affecting genetic transformation of Neisseria gonorrhoeae. J Bacteriol. 1977;129(2):983–92.PubMedCentralPubMed Biswas GD, et al. Factors affecting genetic transformation of Neisseria gonorrhoeae. J Bacteriol. 1977;129(2):983–92.PubMedCentralPubMed
37.
go back to reference Stone BJ, Kwaik YA. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol. 1999;181(5):1395–402.PubMedCentralPubMed Stone BJ, Kwaik YA. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol. 1999;181(5):1395–402.PubMedCentralPubMed
38.
go back to reference Hofreuter D, et al. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol Microbiol. 1998;28(5):1027–38.PubMedCrossRef Hofreuter D, et al. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol Microbiol. 1998;28(5):1027–38.PubMedCrossRef
40.
go back to reference Levine SM, et al. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J. 2007;21(13):3458–67.PubMedCrossRef Levine SM, et al. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J. 2007;21(13):3458–67.PubMedCrossRef
41.
go back to reference Terradot L, et al. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102(12):4596–601.PubMedCentralPubMedCrossRef Terradot L, et al. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102(12):4596–601.PubMedCentralPubMedCrossRef
42.
go back to reference Hofreuter D, et al. Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol. 2003;293(2–3):153–65.PubMedCrossRef Hofreuter D, et al. Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol. 2003;293(2–3):153–65.PubMedCrossRef
43.
go back to reference Schmitt W, et al. Cloning of the Helicobacter pylori recA gene and functional characterization of its product. Mol Gen Genet. 1995;248(5):563–72.PubMedCrossRef Schmitt W, et al. Cloning of the Helicobacter pylori recA gene and functional characterization of its product. Mol Gen Genet. 1995;248(5):563–72.PubMedCrossRef
44.
go back to reference Smeets LC, et al. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol Med Microbiol. 2000;27(2):99–102.PubMedCrossRef Smeets LC, et al. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol Med Microbiol. 2000;27(2):99–102.PubMedCrossRef
46.
48.
go back to reference Kavermann H, et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med. 2003;197(7):813–22.PubMedCentralPubMedCrossRef Kavermann H, et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med. 2003;197(7):813–22.PubMedCentralPubMedCrossRef
49.
50.
51.
go back to reference Ziebuhr W, et al. Evolution of bacterial pathogenesis. Cell Mol Life Sci. 1999;56(9–10):719–28.PubMedCrossRef Ziebuhr W, et al. Evolution of bacterial pathogenesis. Cell Mol Life Sci. 1999;56(9–10):719–28.PubMedCrossRef
52.
go back to reference Buchanan-Wollaston V, et al. The mob and oriT mobilization functions of bacterial plasmid promote its transfer to plants. Nature. 1987;328:172–5.CrossRef Buchanan-Wollaston V, et al. The mob and oriT mobilization functions of bacterial plasmid promote its transfer to plants. Nature. 1987;328:172–5.CrossRef
53.
go back to reference Heinemann JA, Sprague GF. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature. 1989;340(6230):205–9.PubMedCrossRef Heinemann JA, Sprague GF. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature. 1989;340(6230):205–9.PubMedCrossRef
54.
55.
go back to reference Lessl M, Lanka E. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell. 1994;77(3):321–4.PubMedCrossRef Lessl M, Lanka E. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell. 1994;77(3):321–4.PubMedCrossRef
56.
go back to reference Fernandez-Gonzalez E, et al. Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol. 2011;193(22):6257–65.PubMedCentralPubMedCrossRef Fernandez-Gonzalez E, et al. Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol. 2011;193(22):6257–65.PubMedCentralPubMedCrossRef
57.
go back to reference Schroder G, et al. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA. 2011;108(35):14643–8.PubMedCentralPubMedCrossRef Schroder G, et al. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA. 2011;108(35):14643–8.PubMedCentralPubMedCrossRef
58.
go back to reference Llosa M, et al. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol. 2002;45(1):1–8.PubMedCrossRef Llosa M, et al. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol. 2002;45(1):1–8.PubMedCrossRef
59.
go back to reference Waters VL, Guiney DG. Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol. 1993;9(6):1123–30.PubMedCrossRef Waters VL, Guiney DG. Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol. 1993;9(6):1123–30.PubMedCrossRef
60.
go back to reference Kuipers EJ, et al. Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori. J Bacteriol. 1998;180(11):2901–5.PubMedCentralPubMed Kuipers EJ, et al. Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori. J Bacteriol. 1998;180(11):2901–5.PubMedCentralPubMed
61.
go back to reference Kleanthous H, et al. Characterization of a plasmid from Helicobacter pylori encoding a replication protein common to plasmids in gram-positive bacteria. Mol Microbiol. 1991;5(10):2377–89.PubMedCrossRef Kleanthous H, et al. Characterization of a plasmid from Helicobacter pylori encoding a replication protein common to plasmids in gram-positive bacteria. Mol Microbiol. 1991;5(10):2377–89.PubMedCrossRef
62.
go back to reference Hofler C, et al. Cryptic plasmids in Helicobacter pylori: putative functions in conjugative transfer and microcin production. Int J Med Microbiol. 2004;294(2–3):141–8.PubMedCrossRef Hofler C, et al. Cryptic plasmids in Helicobacter pylori: putative functions in conjugative transfer and microcin production. Int J Med Microbiol. 2004;294(2–3):141–8.PubMedCrossRef
64.
go back to reference De la Cruz F, et al. Conjugative DNA metabolism in gram-negative bacteria. FEMS Microbiol Rev. 2010;34(1):18–40.PubMedCrossRef De la Cruz F, et al. Conjugative DNA metabolism in gram-negative bacteria. FEMS Microbiol Rev. 2010;34(1):18–40.PubMedCrossRef
65.
go back to reference Ando T, et al. Restriction-modification systems may be associated with Helicobacter pylori virulence. J Gastroenterol Hepatol. 2010;25(Suppl 1):S95–8.PubMedCrossRef Ando T, et al. Restriction-modification systems may be associated with Helicobacter pylori virulence. J Gastroenterol Hepatol. 2010;25(Suppl 1):S95–8.PubMedCrossRef
66.
go back to reference Hofreuter D, Haas R. Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J Bacteriol. 2002;184(10):2755–66.PubMedCentralPubMedCrossRef Hofreuter D, Haas R. Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J Bacteriol. 2002;184(10):2755–66.PubMedCentralPubMedCrossRef
67.
go back to reference Oh JD, et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci USA. 2006;103(26):9999–10004.PubMedCentralPubMedCrossRef Oh JD, et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci USA. 2006;103(26):9999–10004.PubMedCentralPubMedCrossRef
69.
go back to reference Joo JS, et al. Genetic organization and conjugal plasmid DNA transfer of pHP69, a plasmid from a Korean isolate of Helicobacter pylori. J Microbiol. 2012;50(6):955–61.PubMedCrossRef Joo JS, et al. Genetic organization and conjugal plasmid DNA transfer of pHP69, a plasmid from a Korean isolate of Helicobacter pylori. J Microbiol. 2012;50(6):955–61.PubMedCrossRef
70.
go back to reference Carpenter BM, et al. Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl Environ Microbiol. 2007;73(23):7506–14.PubMedCentralPubMedCrossRef Carpenter BM, et al. Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl Environ Microbiol. 2007;73(23):7506–14.PubMedCentralPubMedCrossRef
71.
go back to reference Xiang Z, et al. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun. 1995;63(1):94–8.PubMedCentralPubMed Xiang Z, et al. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun. 1995;63(1):94–8.PubMedCentralPubMed
72.
go back to reference Gonzalez-Pastor JE, et al. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J Bacteriol. 1995;177(24):7131–40.PubMedCentralPubMed Gonzalez-Pastor JE, et al. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J Bacteriol. 1995;177(24):7131–40.PubMedCentralPubMed
73.
go back to reference Garcia-Bustos JF, et al. Structure and mode of action of microcin 7, an antibacterial peptide produced by Escherichia coli. Antimicrob Agents Chemother. 1985;27(5):791–7.PubMedCentralPubMedCrossRef Garcia-Bustos JF, et al. Structure and mode of action of microcin 7, an antibacterial peptide produced by Escherichia coli. Antimicrob Agents Chemother. 1985;27(5):791–7.PubMedCentralPubMedCrossRef
74.
go back to reference Guijarro JI, et al. Chemical structure and translation inhibition studies of the antibiotic microcin C7. J Biol Chem. 1995;270(40):23520–32.PubMedCrossRef Guijarro JI, et al. Chemical structure and translation inhibition studies of the antibiotic microcin C7. J Biol Chem. 1995;270(40):23520–32.PubMedCrossRef
75.
go back to reference Backert S, et al. Potential role of two Helicobacter pylori relaxases in DNA transfer? Mol Microbiol. 1998;30(3):673–4.PubMedCrossRef Backert S, et al. Potential role of two Helicobacter pylori relaxases in DNA transfer? Mol Microbiol. 1998;30(3):673–4.PubMedCrossRef
76.
go back to reference Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7(11):629–41.PubMedCentralPubMed Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7(11):629–41.PubMedCentralPubMed
78.
go back to reference Pansegrau W, Lanka E. Enzymology of DNA transfer by conjugative mechanisms. Prog Nucleic Acid Res Mol Biol. 1996;54:197–251.PubMedCrossRef Pansegrau W, Lanka E. Enzymology of DNA transfer by conjugative mechanisms. Prog Nucleic Acid Res Mol Biol. 1996;54:197–251.PubMedCrossRef
79.
go back to reference Backert S, et al. Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins. Microbiology. 2005;151(Pt 11):3493–503.PubMedCrossRef Backert S, et al. Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins. Microbiology. 2005;151(Pt 11):3493–503.PubMedCrossRef
80.
go back to reference Grove JI, et al. Site-specific relaxase activity of a VirD2-like protein encoded within the tfs4 genomic island of Helicobacter pylori. J Biol Chem. 2013;288(37):26385–96.PubMedCentralPubMedCrossRef Grove JI, et al. Site-specific relaxase activity of a VirD2-like protein encoded within the tfs4 genomic island of Helicobacter pylori. J Biol Chem. 2013;288(37):26385–96.PubMedCentralPubMedCrossRef
81.
go back to reference Oyarzabal OA, et al. Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol. 2007;45(2):402–8.PubMedCentralPubMedCrossRef Oyarzabal OA, et al. Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol. 2007;45(2):402–8.PubMedCentralPubMedCrossRef
83.
go back to reference Tegtmeyer N, et al. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger. PLoS One. 2013;8(8):e71220.PubMedCentralPubMedCrossRef Tegtmeyer N, et al. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger. PLoS One. 2013;8(8):e71220.PubMedCentralPubMedCrossRef
84.
go back to reference Tomb JF, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388(6642):539–47.PubMedCrossRef Tomb JF, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388(6642):539–47.PubMedCrossRef
85.
go back to reference Heuermann D, Haas R. Genetic organization of a small cryptic plasmid of Helicobacter pylori. Gene. 1995;165(1):17–24.PubMedCrossRef Heuermann D, Haas R. Genetic organization of a small cryptic plasmid of Helicobacter pylori. Gene. 1995;165(1):17–24.PubMedCrossRef
86.
go back to reference Quinones M, et al. Sequence and gene expression analyses of plasmid pHPM8 from Helicobacter pylori reveal the presence of two operons with putative roles in plasmid replication and antibiotic activity. Plasmid. 2001;46(3):223–8.PubMedCrossRef Quinones M, et al. Sequence and gene expression analyses of plasmid pHPM8 from Helicobacter pylori reveal the presence of two operons with putative roles in plasmid replication and antibiotic activity. Plasmid. 2001;46(3):223–8.PubMedCrossRef
87.
go back to reference Minnis JA, et al. Characterization of a 3.5-kbp plasmid from Helicobacter pylori. Plasmid. 1995;34(1):22–36.PubMedCrossRef Minnis JA, et al. Characterization of a 3.5-kbp plasmid from Helicobacter pylori. Plasmid. 1995;34(1):22–36.PubMedCrossRef
88.
go back to reference De Ungria MC, et al. A novel method of extracting plasmid DNA from Helicobacter species. Helicobacter. 1998;3(4):269–77.PubMedCrossRef De Ungria MC, et al. A novel method of extracting plasmid DNA from Helicobacter species. Helicobacter. 1998;3(4):269–77.PubMedCrossRef
89.
go back to reference Song JY, et al. Characterization of a small cryptic plasmid, pHP51, from a Korean isolate of strain 51 of Helicobacter pylori. Plasmid. 2003;50(2):145–51.PubMedCrossRef Song JY, et al. Characterization of a small cryptic plasmid, pHP51, from a Korean isolate of strain 51 of Helicobacter pylori. Plasmid. 2003;50(2):145–51.PubMedCrossRef
90.
go back to reference Hosaka Y, et al. Characterization of pKU701, a 2.5-kb plasmid, in a Japanese Helicobacter pylori isolate. Plasmid. 2002;47(3):193–200.PubMedCrossRef Hosaka Y, et al. Characterization of pKU701, a 2.5-kb plasmid, in a Japanese Helicobacter pylori isolate. Plasmid. 2002;47(3):193–200.PubMedCrossRef
91.
go back to reference Song JY, et al. pHP489, a Helicobacter pylori small cryptic plasmid, harbors a novel gene coding for a replication initiation protein. Plasmid. 2003;50(3):236–41.PubMedCrossRef Song JY, et al. pHP489, a Helicobacter pylori small cryptic plasmid, harbors a novel gene coding for a replication initiation protein. Plasmid. 2003;50(3):236–41.PubMedCrossRef
92.
Metadata
Title
DNA transfer in the gastric pathogen Helicobacter pylori
Authors
Esther Fernandez-Gonzalez
Steffen Backert
Publication date
01-04-2014
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 4/2014
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-014-0938-y

Other articles of this Issue 4/2014

Journal of Gastroenterology 4/2014 Go to the issue

Original Article—Liver, Pancreas, and Biliary Tract

Beneficial effects of green tea catechin on massive hepatectomy model in rats

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.