Skip to main content
Top
Published in: Intensive Care Medicine 5/2011

01-05-2011 | Pediatric Original

Distribution of tidal ventilation during volume-targeted ventilation is variable and influenced by age in the preterm lung

Authors: Ruth K. Armstrong, Hazel R. Carlisle, Peter G. Davis, Andreas Schibler, David G. Tingay

Published in: Intensive Care Medicine | Issue 5/2011

Login to get access

Abstract

Purpose

Synchronised volume-targeted ventilation (SIPPV + VTV) attempts to reduce lung injury by standardising volume delivery to the preterm lung. The aim of this study is to describe the regional distribution and variability of ventilation within the preterm lung during SIPPV + VTV.

Methods

Twenty-seven stable, supine, preterm infants with <32 weeks gestation receiving SIPPV + VTV were studied. From each infant, the anterior-to-posterior impedance change due to tidal ventilation (∆Z VT; countless units) was determined during every breath from three, 30-s, electrical impedance tomography recordings. ∆Z VT within the anterior, middle and posterior thirds of the chest were compared using area under the curve analysis. The coefficient of variation (CV) of ∆Z VT in the anterior and posterior hemithoraces, inflation pressure and, where available, V T at airway opening were compared. Infants were sub-grouped by age (≤7 and >7 days), supplemental oxygen requirement and set tidal volume.

Results

In all sub-groups, the middle third of the chest accounted for the greatest ∆Z VT [p < 0.0001, repeated-measures analysis of variance (ANOVA)]. The middle third of the chest constituted a greater relative ∆Z VT in infants aged >7 days compared with ≤7 days (p < 0.0001, repeated-measures ANOVA). Set tidal volume and oxygen requirement did not significantly influence the regional distribution of ∆Z VT. The mean (standard deviation, SD) CV of ∆Z VTANT and ∆Z VTPOST were 30.6% (14.0%) and 31.9% (12.7%). ∆Z VTANT and ∆Z VTPOST expressed greater breath-to-breath variability than the variation in inflation pressure and V T at airway opening (p = 0.012 and p < 0.0001, respectively, paired t-tests).

Conclusion

During SIPPV + VTV the preterm infant exhibits marked breath-to-breath variability in regional ventilation which is influenced by age.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMed Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMed
3.
go back to reference Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF (2003) Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626PubMedCrossRef Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF (2003) Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626PubMedCrossRef
4.
go back to reference Schiller HJ, Steinberg J, Halter J, McCann U, DaSilva M, Gatto LA, Carney D, Nieman G (2003) Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit Care Med 31:1126–1133PubMedCrossRef Schiller HJ, Steinberg J, Halter J, McCann U, DaSilva M, Gatto LA, Carney D, Nieman G (2003) Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit Care Med 31:1126–1133PubMedCrossRef
5.
go back to reference Rouby JJ, Ferrari F, Bouhemad B, Lu Q (2007) Positive end-expiratory pressure in acute respiratory distress syndrome: should the ‘open lung strategy’ be replaced by a ‘protective lung strategy’? Crit Care 11:180PubMedCrossRef Rouby JJ, Ferrari F, Bouhemad B, Lu Q (2007) Positive end-expiratory pressure in acute respiratory distress syndrome: should the ‘open lung strategy’ be replaced by a ‘protective lung strategy’? Crit Care 11:180PubMedCrossRef
6.
go back to reference Lista G, Colnaghi M, Castoldi F, Condo V, Reali R, Compagnoni G, Mosca F (2004) Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (RDS). Pediatr Pulmonol 37:510–514PubMedCrossRef Lista G, Colnaghi M, Castoldi F, Condo V, Reali R, Compagnoni G, Mosca F (2004) Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (RDS). Pediatr Pulmonol 37:510–514PubMedCrossRef
7.
go back to reference McCallion N, Davis PG, Morley CJ (2005) Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev:CD003666 McCallion N, Davis PG, Morley CJ (2005) Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev:CD003666
8.
go back to reference Abubakar K, Keszler M (2005) Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol 25:638–642PubMedCrossRef Abubakar K, Keszler M (2005) Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol 25:638–642PubMedCrossRef
9.
go back to reference Keszler M, Abubakar K (2004) Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 38:240–245PubMedCrossRef Keszler M, Abubakar K (2004) Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 38:240–245PubMedCrossRef
10.
go back to reference Pellicano A, Tingay DG, Mills JF, Fasulakis S, Morley CJ, Dargaville PA (2009) Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med 35(11):1990–1998PubMedCrossRef Pellicano A, Tingay DG, Mills JF, Fasulakis S, Morley CJ, Dargaville PA (2009) Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med 35(11):1990–1998PubMedCrossRef
11.
go back to reference Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMed Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMed
12.
go back to reference Hough JL, Grant CA, Pham TMT, Schibler A (2009) The use of filling indices to determine temporal characteristics of lung filling in ventilated preterm infants. J Paediatr Child Health 45:A23 Hough JL, Grant CA, Pham TMT, Schibler A (2009) The use of filling indices to determine temporal characteristics of lung filling in ventilated preterm infants. J Paediatr Child Health 45:A23
13.
go back to reference Grant CA, Fraser JF, Dunster KR, Schibler A (2009) The assessment of regional lung mechanics with electrical impedance tomography: a pilot study during recruitment manoeuvres. Intensive Care Med 35:166–170PubMedCrossRef Grant CA, Fraser JF, Dunster KR, Schibler A (2009) The assessment of regional lung mechanics with electrical impedance tomography: a pilot study during recruitment manoeuvres. Intensive Care Med 35:166–170PubMedCrossRef
14.
go back to reference Schibler A, Calzia E (2008) Electrical impedance tomography: a future item on the “Christmas Wish List” of the intensivist? Intensive Care Med 34:400–401 (author reply 583)PubMedCrossRef Schibler A, Calzia E (2008) Electrical impedance tomography: a future item on the “Christmas Wish List” of the intensivist? Intensive Care Med 34:400–401 (author reply 583)PubMedCrossRef
15.
go back to reference Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316PubMedCrossRef Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316PubMedCrossRef
16.
go back to reference Frerichs I, Schiffmann H, Oehler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRef Frerichs I, Schiffmann H, Oehler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRef
17.
go back to reference Putensen C, Wrigge H, Zinserling J (2007) Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care 13:344–350PubMedCrossRef Putensen C, Wrigge H, Zinserling J (2007) Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care 13:344–350PubMedCrossRef
18.
go back to reference Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMed Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMed
19.
go back to reference Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43PubMed Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43PubMed
20.
go back to reference Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRef Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRef
21.
go back to reference Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRef Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRef
22.
go back to reference Riedel T, Kyburz M, Latzin P, Thamrin C, Frey U (2009) Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med 35:144–151PubMedCrossRef Riedel T, Kyburz M, Latzin P, Thamrin C, Frey U (2009) Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med 35:144–151PubMedCrossRef
23.
go back to reference Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMed Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMed
24.
go back to reference van Genderingen HR, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794PubMedCrossRef van Genderingen HR, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794PubMedCrossRef
25.
go back to reference Schibler A, Yuill M, Parsley C, Pham T, Gilshenan K, Dakin C (2009) Regional ventilation distribution in non-sedated spontaneously breathing newborns and adults is not different. Pediatr Pulmonol 44:851–858PubMedCrossRef Schibler A, Yuill M, Parsley C, Pham T, Gilshenan K, Dakin C (2009) Regional ventilation distribution in non-sedated spontaneously breathing newborns and adults is not different. Pediatr Pulmonol 44:851–858PubMedCrossRef
26.
go back to reference Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169PubMedCrossRef Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169PubMedCrossRef
27.
28.
go back to reference Barber DC (1989) A sensitivity method for electrical impedance tomography. Clin Phys Physiol Meas 10:368–371PubMedCrossRef Barber DC (1989) A sensitivity method for electrical impedance tomography. Clin Phys Physiol Meas 10:368–371PubMedCrossRef
29.
go back to reference Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424PubMedCrossRef Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424PubMedCrossRef
30.
go back to reference Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann NY Acad Sci 873:493–505PubMedCrossRef Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann NY Acad Sci 873:493–505PubMedCrossRef
31.
go back to reference Dunlop S, Hough J, Riedel T, Fraser JF, Dunster K, Schibler A (2006) Electrical impedance tomography in extremely prematurely born infants and during high frequency oscillatory ventilation analyzed in the frequency domain. Physiol Meas 27:1151–1165PubMedCrossRef Dunlop S, Hough J, Riedel T, Fraser JF, Dunster K, Schibler A (2006) Electrical impedance tomography in extremely prematurely born infants and during high frequency oscillatory ventilation analyzed in the frequency domain. Physiol Meas 27:1151–1165PubMedCrossRef
32.
go back to reference Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med 32:1392–1398PubMedCrossRef Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med 32:1392–1398PubMedCrossRef
33.
go back to reference Roske K, Foitzik B, Wauer RR, Schmalisch G (1998) Accuracy of volume measurements in mechanically ventilated newborns: a comparative study of commercial devices. J Clin Monit 14:413–420CrossRef Roske K, Foitzik B, Wauer RR, Schmalisch G (1998) Accuracy of volume measurements in mechanically ventilated newborns: a comparative study of commercial devices. J Clin Monit 14:413–420CrossRef
34.
go back to reference Jaecklin T, Morel DR, Rimensberger PC (2007) Volume-targeted modes of modern neonatal ventilators: how stable is the delivered tidal volume? Intensive Care Med 33:326–335PubMedCrossRef Jaecklin T, Morel DR, Rimensberger PC (2007) Volume-targeted modes of modern neonatal ventilators: how stable is the delivered tidal volume? Intensive Care Med 33:326–335PubMedCrossRef
35.
go back to reference Attar MA, Donn SM (2002) Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol 7:353–360PubMedCrossRef Attar MA, Donn SM (2002) Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol 7:353–360PubMedCrossRef
36.
go back to reference Lista G, Castoldi F, Fontana P, Reali R, Reggiani A, Bianchi S, Compagnoni G (2006) Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol 41:357–363PubMedCrossRef Lista G, Castoldi F, Fontana P, Reali R, Reggiani A, Bianchi S, Compagnoni G (2006) Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol 41:357–363PubMedCrossRef
37.
go back to reference Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMed Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMed
38.
go back to reference Downie JM, Nam AJ, Simon BA (2004) Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 169:957–962PubMedCrossRef Downie JM, Nam AJ, Simon BA (2004) Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 169:957–962PubMedCrossRef
39.
go back to reference Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056PubMedCrossRef Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056PubMedCrossRef
40.
go back to reference Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26:1215–1227PubMedCrossRef Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26:1215–1227PubMedCrossRef
41.
go back to reference Davies H, Kitchman R, Gordon I, Helms P (1985) Regional ventilation in infancy. Reversal of adult pattern. N Engl J Med 313:1626–1628PubMedCrossRef Davies H, Kitchman R, Gordon I, Helms P (1985) Regional ventilation in infancy. Reversal of adult pattern. N Engl J Med 313:1626–1628PubMedCrossRef
42.
go back to reference Yang F, Patterson RP (2007) The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model. Physiol Meas 28:S153–S161PubMedCrossRef Yang F, Patterson RP (2007) The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model. Physiol Meas 28:S153–S161PubMedCrossRef
43.
go back to reference Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779PubMedCrossRef Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779PubMedCrossRef
44.
go back to reference Albaiceta GM, Taboada F, Parra D, Luyando LH, Calvo J, Menendez R, Otero J (2004) Tomographic study of the inflection points of the pressure–volume curve in acute lung injury. Am J Respir Crit Care Med 170:1066–1072PubMedCrossRef Albaiceta GM, Taboada F, Parra D, Luyando LH, Calvo J, Menendez R, Otero J (2004) Tomographic study of the inflection points of the pressure–volume curve in acute lung injury. Am J Respir Crit Care Med 170:1066–1072PubMedCrossRef
45.
go back to reference Keszler M, Nassabeh-Montazami S, Abubakar K (2009) Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with volume guarantee. Arch Dis Child Fetal Neonatal Ed 94:F279–F282PubMedCrossRef Keszler M, Nassabeh-Montazami S, Abubakar K (2009) Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with volume guarantee. Arch Dis Child Fetal Neonatal Ed 94:F279–F282PubMedCrossRef
46.
go back to reference Glenny RW, Bernard SL, Luchtel DL, Neradilek B, Polissar NL (2007) The spatial-temporal redistribution of pulmonary blood flow with postnatal growth. J Appl Physiol 102:1281–1288PubMedCrossRef Glenny RW, Bernard SL, Luchtel DL, Neradilek B, Polissar NL (2007) The spatial-temporal redistribution of pulmonary blood flow with postnatal growth. J Appl Physiol 102:1281–1288PubMedCrossRef
47.
go back to reference Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA (2006) The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation. Am J Respir Crit Care Med 173:414–420PubMedCrossRef Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA (2006) The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation. Am J Respir Crit Care Med 173:414–420PubMedCrossRef
48.
go back to reference Langer M, Mascheroni D, Marcolin R, Gattinoni L (1988) The prone position in ARDS patients. A clinical study. Chest 94:103–107PubMedCrossRef Langer M, Mascheroni D, Marcolin R, Gattinoni L (1988) The prone position in ARDS patients. A clinical study. Chest 94:103–107PubMedCrossRef
Metadata
Title
Distribution of tidal ventilation during volume-targeted ventilation is variable and influenced by age in the preterm lung
Authors
Ruth K. Armstrong
Hazel R. Carlisle
Peter G. Davis
Andreas Schibler
David G. Tingay
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 5/2011
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-011-2157-9

Other articles of this Issue 5/2011

Intensive Care Medicine 5/2011 Go to the issue