Skip to main content
Top
Published in: Acta Neuropathologica 3/2019

01-03-2019 | Diseases of the neuromuscular synapses and muscles | Original Paper

ACTN2 mutations cause “Multiple structured Core Disease” (MsCD)

Authors: Xavière Lornage, Norma B. Romero, Claire A. Grosgogeat, Edoardo Malfatti, Sandra Donkervoort, Michael M. Marchetti, Sarah B. Neuhaus, A. Reghan Foley, Clémence Labasse, Raphaël Schneider, Robert Y. Carlier, Katherine R. Chao, Livija Medne, Jean-François Deleuze, David Orlikowski, Carsten G. Bönnemann, Vandana A. Gupta, Michel Fardeau, Johann Böhm, Jocelyn Laporte

Published in: Acta Neuropathologica | Issue 3/2019

Login to get access

Abstract

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R et al (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427CrossRefPubMedPubMedCentral Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R et al (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427CrossRefPubMedPubMedCentral
2.
go back to reference Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM (1992) Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267:9281–9288PubMed Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM (1992) Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267:9281–9288PubMed
4.
go back to reference Carlier R (2014) MNM et IRM musculaire/corps entier: apport au diagnostic et au suivi. In: AFM-Téléthon, Société Française de Myologie SFM (eds) Les Cahiers de Myologie, pp 22-32 Carlier R (2014) MNM et IRM musculaire/corps entier: apport au diagnostic et au suivi. In: AFM-Téléthon, Société Française de Myologie SFM (eds) Les Cahiers de Myologie, pp 22-32
5.
go back to reference Chan Y, Tong HQ, Beggs AH, Kunkel LM (1998) Human skeletal muscle-specific alpha-actinin-2 and -3 isoforms form homodimers and heterodimers in vitro and in vivo. Biochem Biophys Res Commun 248:134–139CrossRefPubMed Chan Y, Tong HQ, Beggs AH, Kunkel LM (1998) Human skeletal muscle-specific alpha-actinin-2 and -3 isoforms form homodimers and heterodimers in vitro and in vivo. Biochem Biophys Res Commun 248:134–139CrossRefPubMed
8.
go back to reference Cukovic D, Lu GW, Wible B, Steele DF, Fedida D (2001) A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of alpha-actinin-2. FEBS Lett 498:87–92CrossRefPubMed Cukovic D, Lu GW, Wible B, Steele DF, Fedida D (2001) A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of alpha-actinin-2. FEBS Lett 498:87–92CrossRefPubMed
9.
go back to reference Dubowitz V, Pearse AG (1960) Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet 2:23–24CrossRefPubMed Dubowitz V, Pearse AG (1960) Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet 2:23–24CrossRefPubMed
10.
11.
go back to reference Eilertsen KJ, Kazmierski ST, Keller TC 3rd (1997) Interaction of alpha-actinin with cellular titin. Eur J Cell Biol 74:361–364PubMed Eilertsen KJ, Kazmierski ST, Keller TC 3rd (1997) Interaction of alpha-actinin with cellular titin. Eur J Cell Biol 74:361–364PubMed
12.
go back to reference Engel AG, Gomez MR, Groover RV (1971) Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc 46:666–681PubMed Engel AG, Gomez MR, Groover RV (1971) Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc 46:666–681PubMed
13.
go back to reference Fardeau M (1982) Congenital Myopathies. In: Mastaglia F, Walton J (eds) Skeletal muscle pathology, 2nd edn. Churchill Livingstone, Edinburgh, pp 237–281 Fardeau M (1982) Congenital Myopathies. In: Mastaglia F, Walton J (eds) Skeletal muscle pathology, 2nd edn. Churchill Livingstone, Edinburgh, pp 237–281
14.
go back to reference Ferreiro A, Estournet B, Chateau D, Romero NB, Laroche C, Odent S et al (2000) Multi-minicore disease—searching for boundaries: phenotype analysis of 38 cases. Ann Neurol 48:745–757CrossRefPubMed Ferreiro A, Estournet B, Chateau D, Romero NB, Laroche C, Odent S et al (2000) Multi-minicore disease—searching for boundaries: phenotype analysis of 38 cases. Ann Neurol 48:745–757CrossRefPubMed
16.
go back to reference Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176CrossRefPubMed Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176CrossRefPubMed
23.
go back to reference Huang SM, Huang CJ, Wang WM, Kang JC, Hsu WC (2004) The enhancement of nuclear receptor transcriptional activation by a mouse actin-binding protein, alpha actinin 2. J Mol Endocrinol 32:481–496CrossRefPubMed Huang SM, Huang CJ, Wang WM, Kang JC, Hsu WC (2004) The enhancement of nuclear receptor transcriptional activation by a mouse actin-binding protein, alpha actinin 2. J Mol Endocrinol 32:481–496CrossRefPubMed
25.
go back to reference Landon D (1982) Skeletal muscle—normal morphology, development and innervation. In: Walton J, Mastaglia F (eds) Skeletal muscle pathology. Churchill Livingstone, Edinburgh, pp 1–87 Landon D (1982) Skeletal muscle—normal morphology, development and innervation. In: Walton J, Mastaglia F (eds) Skeletal muscle pathology. Churchill Livingstone, Edinburgh, pp 1–87
30.
go back to reference McGregor A, Blanchard AD, Rowe AJ, Critchley DR (1994) Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J 301(Pt 1):225–233CrossRefPubMedPubMedCentral McGregor A, Blanchard AD, Rowe AJ, Critchley DR (1994) Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J 301(Pt 1):225–233CrossRefPubMedPubMedCentral
31.
go back to reference Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG et al (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215CrossRefPubMed Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG et al (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215CrossRefPubMed
34.
go back to reference Nave R, Furst DO, Weber K (1990) Interaction of alpha-actinin and nebulin in vitro. Support for the existence of a fourth filament system in skeletal muscle. FEBS Lett 269:163–166CrossRefPubMed Nave R, Furst DO, Weber K (1990) Interaction of alpha-actinin and nebulin in vitro. Support for the existence of a fourth filament system in skeletal muscle. FEBS Lett 269:163–166CrossRefPubMed
36.
go back to reference Otey CA, Pavalko FM, Burridge K (1990) An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol 111:721–729CrossRefPubMed Otey CA, Pavalko FM, Burridge K (1990) An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol 111:721–729CrossRefPubMed
41.
go back to reference Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O (1999) Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum Mol Genet 8:1329–1336CrossRefPubMed Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O (1999) Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum Mol Genet 8:1329–1336CrossRefPubMed
45.
go back to reference Westerfield M (2007) The Zebrafish Book: a guide for the laboratory use of Zebrafish (Danio Rerio), City Westerfield M (2007) The Zebrafish Book: a guide for the laboratory use of Zebrafish (Danio Rerio), City
Metadata
Title
ACTN2 mutations cause “Multiple structured Core Disease” (MsCD)
Authors
Xavière Lornage
Norma B. Romero
Claire A. Grosgogeat
Edoardo Malfatti
Sandra Donkervoort
Michael M. Marchetti
Sarah B. Neuhaus
A. Reghan Foley
Clémence Labasse
Raphaël Schneider
Robert Y. Carlier
Katherine R. Chao
Livija Medne
Jean-François Deleuze
David Orlikowski
Carsten G. Bönnemann
Vandana A. Gupta
Michel Fardeau
Johann Böhm
Jocelyn Laporte
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 3/2019
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-019-01963-8

Other articles of this Issue 3/2019

Acta Neuropathologica 3/2019 Go to the issue