Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Review

DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases

Authors: Ashley Haluck-Kangas, Monal Patel, Bidur Paudel, Aparajitha Vaidyanathan, Andrea E. Murmann, Marcus E. Peter

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2–7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3′ untranslated region (3′ UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2–7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3′ UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.
Literature
1.
3.
go back to reference Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86.PubMedCrossRef Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86.PubMedCrossRef
5.
go back to reference Budhwani M, Mazzieri R, Dolcetti R. Plasticity of type I interferon-mediated responses in Cancer therapy: from anti-tumor immunity to resistance. Front Oncol. 2018;8:322.PubMedPubMedCentralCrossRef Budhwani M, Mazzieri R, Dolcetti R. Plasticity of type I interferon-mediated responses in Cancer therapy: from anti-tumor immunity to resistance. Front Oncol. 2018;8:322.PubMedPubMedCentralCrossRef
6.
go back to reference Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.PubMedCrossRef Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.PubMedCrossRef
7.
go back to reference van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol. 2006;24:186–93.PubMedCrossRef van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol. 2006;24:186–93.PubMedCrossRef
10.
11.
go back to reference Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.PubMedCrossRef Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.PubMedCrossRef
12.
go back to reference Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.PubMedCrossRef Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.PubMedCrossRef
13.
14.
15.
go back to reference Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.PubMedCrossRef Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.PubMedCrossRef
16.
go back to reference Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–4.PubMedCrossRef Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–4.PubMedCrossRef
17.
go back to reference Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol. 2008;15:346–53.PubMedCrossRef Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol. 2008;15:346–53.PubMedCrossRef
18.
go back to reference Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–64.PubMedPubMedCentralCrossRef Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–64.PubMedPubMedCentralCrossRef
19.
go back to reference Patel VD, Capra JA. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics. 2017;18:672.PubMedPubMedCentralCrossRef Patel VD, Capra JA. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics. 2017;18:672.PubMedPubMedCentralCrossRef
22.
go back to reference Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature. 2012;488:231–5.PubMedPubMedCentralCrossRef Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature. 2012;488:231–5.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Hadji A, Ceppi P, Murmann AE, Brockway S, Pattanayak A, Bhinder B, et al. Death induced by CD95 or CD95 ligand elimination. Cell Rep. 2014;10:208–22.CrossRef Hadji A, Ceppi P, Murmann AE, Brockway S, Pattanayak A, Bhinder B, et al. Death induced by CD95 or CD95 ligand elimination. Cell Rep. 2014;10:208–22.CrossRef
25.
go back to reference Putzbach W, Gao QQ, Patel M, van Dongen S, Haluck-Kangas A, Sarshad AA, et al. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. eLife. 2017;6:e29702.PubMedPubMedCentralCrossRef Putzbach W, Gao QQ, Patel M, van Dongen S, Haluck-Kangas A, Sarshad AA, et al. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. eLife. 2017;6:e29702.PubMedPubMedCentralCrossRef
28.
go back to reference Putzbach W, Gao QQ, Patel M, Haluck-Kangas A, Murmann AE, Peter ME. DISE - a seed dependent RNAi off-target effect that kills Cancer cells. Trends Cancer. 2018;4:10–9.PubMedPubMedCentralCrossRef Putzbach W, Gao QQ, Patel M, Haluck-Kangas A, Murmann AE, Peter ME. DISE - a seed dependent RNAi off-target effect that kills Cancer cells. Trends Cancer. 2018;4:10–9.PubMedPubMedCentralCrossRef
29.
go back to reference Murmann AE, Gao QQ, Putzbach WT, Patel M, Bartom ET, Law CY, et al. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep. 2018;19:e45336.PubMedPubMedCentralCrossRef Murmann AE, Gao QQ, Putzbach WT, Patel M, Bartom ET, Law CY, et al. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep. 2018;19:e45336.PubMedPubMedCentralCrossRef
30.
go back to reference Gao QQ, Putzbach W, Murmann AE, Chen S, Ambrosini G, Peter JM, et al. 6mer seed toxicity in tumor suppressive miRNAs. Nature Comm. 2018;9:4504.CrossRef Gao QQ, Putzbach W, Murmann AE, Chen S, Ambrosini G, Peter JM, et al. 6mer seed toxicity in tumor suppressive miRNAs. Nature Comm. 2018;9:4504.CrossRef
31.
go back to reference Corbin JM, Geordescu C, Wren JD, Xu C, Asch AS, Ruiz-Echevarria MJ. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. Mol Ther Nucleic Acids. 2021;24:337–51.PubMedPubMedCentralCrossRef Corbin JM, Geordescu C, Wren JD, Xu C, Asch AS, Ruiz-Echevarria MJ. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. Mol Ther Nucleic Acids. 2021;24:337–51.PubMedPubMedCentralCrossRef
32.
go back to reference Gu D, Ahn SY, Eom S, Lee HS, Ham J, Lee DH, et al. AGO-accessible anticancer siRNAs designed with synergistic miRNA-like activity. Mol Ther Nucleic Acids. 2021;23:1172–90.PubMedPubMedCentralCrossRef Gu D, Ahn SY, Eom S, Lee HS, Ham J, Lee DH, et al. AGO-accessible anticancer siRNAs designed with synergistic miRNA-like activity. Mol Ther Nucleic Acids. 2021;23:1172–90.PubMedPubMedCentralCrossRef
33.
go back to reference Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350:1092–6.PubMedCrossRef Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350:1092–6.PubMedCrossRef
34.
go back to reference Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350:1096–101.PubMedPubMedCentralCrossRef Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350:1096–101.PubMedPubMedCentralCrossRef
35.
go back to reference Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific Cancer liabilities. Cell. 2015;163:1515–26.PubMedCrossRef Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific Cancer liabilities. Cell. 2015;163:1515–26.PubMedCrossRef
36.
go back to reference Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005;123:1133–46.PubMedCrossRef Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005;123:1133–46.PubMedCrossRef
38.
go back to reference Wu W, Lee I, Spratt H, Fang X, Bao X. tRNA-derived fragments in Alzheimer's disease: implications for new disease biomarkers and neuropathological mechanisms. J Alzheimers Dis. 2021;79:793–806.PubMedPubMedCentralCrossRef Wu W, Lee I, Spratt H, Fang X, Bao X. tRNA-derived fragments in Alzheimer's disease: implications for new disease biomarkers and neuropathological mechanisms. J Alzheimers Dis. 2021;79:793–806.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Karaiskos S, Grigoriev A. Dynamics of tRNA fragments and their targets in aging mammalian brain. F1000Res. 2016;5(ISCB COMM):2758. Karaiskos S, Grigoriev A. Dynamics of tRNA fragments and their targets in aging mammalian brain. F1000Res. 2016;5(ISCB COMM):2758.
41.
go back to reference Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-linking ligation and sequencing of hybrids (qCLASH) reveals an unpredicted miRNA Targetome in melanoma cells. Cancers (Basel). 2021;13:1096. Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-linking ligation and sequencing of hybrids (qCLASH) reveals an unpredicted miRNA Targetome in melanoma cells. Cancers (Basel). 2021;13:1096.
42.
go back to reference Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153:654–65.PubMedPubMedCentralCrossRef Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153:654–65.PubMedPubMedCentralCrossRef
43.
go back to reference Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nature Met. 2004;1:47–53. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nature Met.  2004;1:47–53.
44.
go back to reference Patel M, Wang Y, Bartom ET, Dhir R, Nephew KP, Adli M, et al. The ratio of toxic-to-nontoxic microRNAs predicts platinum sensitivity in ovarian cancer. Cancer Res. 2021;81:3985. Patel M, Wang Y, Bartom ET, Dhir R, Nephew KP, Adli M, et al. The ratio of toxic-to-nontoxic microRNAs predicts platinum sensitivity in ovarian cancer. Cancer Res. 2021;81:3985.
46.
go back to reference Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007;104:11400–5.PubMedPubMedCentralCrossRef Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007;104:11400–5.PubMedPubMedCentralCrossRef
47.
go back to reference Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 2008;68:2587–91.PubMedCrossRef Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 2008;68:2587–91.PubMedCrossRef
48.
go back to reference Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17:F19–36.PubMedCrossRef Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17:F19–36.PubMedCrossRef
50.
go back to reference Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors, ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedPubMedCentralCrossRef Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors, ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedPubMedCentralCrossRef
51.
go back to reference Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshild G, et al. The microRNA-200 family and miR-205 regulate epithelial-mesenchymal transition by targeting the E-cadherin repressors, ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.PubMedCrossRef Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshild G, et al. The microRNA-200 family and miR-205 regulate epithelial-mesenchymal transition by targeting the E-cadherin repressors, ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.PubMedCrossRef
52.
go back to reference Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009;8:843–52.PubMedCrossRef Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009;8:843–52.PubMedCrossRef
53.
go back to reference Lu J, Getz G, Miska EA, Varez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef Lu J, Getz G, Miska EA, Varez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef
54.
go back to reference Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.PubMedCrossRef Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.PubMedCrossRef
56.
go back to reference Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer. 2012;12:613–26.PubMedCrossRef Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer. 2012;12:613–26.PubMedCrossRef
57.
go back to reference Ofir M, Hacohen D, Ginsberg D. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res. 2011;9:440–7.PubMedCrossRef Ofir M, Hacohen D, Ginsberg D. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res. 2011;9:440–7.PubMedCrossRef
59.
go back to reference Fort RS, Garat B, Sotelo-Silveira JR, Duhagon MA. vtRNA2-1/nc886 produces a small RNA that contributes to its tumor suppression action through the microRNA pathway in prostate Cancer. Noncoding RNA. 2020;6:7.PubMedCentralCrossRef Fort RS, Garat B, Sotelo-Silveira JR, Duhagon MA. vtRNA2-1/nc886 produces a small RNA that contributes to its tumor suppression action through the microRNA pathway in prostate Cancer. Noncoding RNA. 2020;6:7.PubMedCentralCrossRef
60.
go back to reference Fort RS, Matho C, Geraldo MV, Ottati MC, Yamashita AS, Saito KC, et al. Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth. BMC Cancer. 2018;18:127.PubMedPubMedCentralCrossRef Fort RS, Matho C, Geraldo MV, Ottati MC, Yamashita AS, Saito KC, et al. Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth. BMC Cancer. 2018;18:127.PubMedPubMedCentralCrossRef
62.
go back to reference Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol. 2017;24:258–69.PubMedCrossRef Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol. 2017;24:258–69.PubMedCrossRef
64.
go back to reference Murmann AE, McMahon KM, Halluck-Kangas A, Ravindran N, Patel M, Law C, et al. Induction of DISE in ovarian cancer cells in vivo. Oncotarget. 2017;8:84643–58.PubMedPubMedCentralCrossRef Murmann AE, McMahon KM, Halluck-Kangas A, Ravindran N, Patel M, Law C, et al. Induction of DISE in ovarian cancer cells in vivo. Oncotarget. 2017;8:84643–58.PubMedPubMedCentralCrossRef
65.
go back to reference Iliopoulos D, Rotem A, Struhl K. Inhibition of miR-193a expression by max and RXRalpha activates K-Ras and PLAU to mediate distinct aspects of cellular transformation. Cancer Res. 2011;71:5144–53.PubMedPubMedCentralCrossRef Iliopoulos D, Rotem A, Struhl K. Inhibition of miR-193a expression by max and RXRalpha activates K-Ras and PLAU to mediate distinct aspects of cellular transformation. Cancer Res. 2011;71:5144–53.PubMedPubMedCentralCrossRef
66.
go back to reference Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs. 2017;35:180–8.CrossRef Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs. 2017;35:180–8.CrossRef
67.
go back to reference Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–47.PubMedPubMedCentralCrossRef Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–47.PubMedPubMedCentralCrossRef
68.
70.
go back to reference Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18:610–21.PubMedPubMedCentralCrossRef Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18:610–21.PubMedPubMedCentralCrossRef
71.
go back to reference Cabrini M, Roncador M, Galbiati A, Cipolla L, Maffia A, Iannelli F, et al. DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. J Cell Sci. 2021;134:jcs249706. Cabrini M, Roncador M, Galbiati A, Cipolla L, Maffia A, Iannelli F, et al. DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. J Cell Sci. 2021;134:jcs249706.
72.
go back to reference Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun. 2018;9:532.PubMedPubMedCentralCrossRef Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun. 2018;9:532.PubMedPubMedCentralCrossRef
73.
go back to reference Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, et al. A role for small RNAs in DNA double-strand break repair. Cell. 2012;149:101–12.PubMedCrossRef Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, et al. A role for small RNAs in DNA double-strand break repair. Cell. 2012;149:101–12.PubMedCrossRef
74.
go back to reference d'Adda di Fagagna F. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol. 2014;24:171–8.PubMedCrossRef d'Adda di Fagagna F. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol. 2014;24:171–8.PubMedCrossRef
75.
go back to reference Gao M, Wei W, Li MM, Wu YS, Ba Z, Jin KX, et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res. 2014;24:532–41.PubMedPubMedCentralCrossRef Gao M, Wei W, Li MM, Wu YS, Ba Z, Jin KX, et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res. 2014;24:532–41.PubMedPubMedCentralCrossRef
76.
go back to reference Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, et al. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep. 2013;3:2100–12.PubMedPubMedCentralCrossRef Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, et al. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep. 2013;3:2100–12.PubMedPubMedCentralCrossRef
77.
go back to reference Calses PC, Dhillon KK, Tucker N, Chi Y, Huang JW, Kawasumi M, et al. DGCR8 mediates repair of UV-induced DNA damage independently of RNA processing. Cell Rep. 2017;19:162–74.PubMedPubMedCentralCrossRef Calses PC, Dhillon KK, Tucker N, Chi Y, Huang JW, Kawasumi M, et al. DGCR8 mediates repair of UV-induced DNA damage independently of RNA processing. Cell Rep. 2017;19:162–74.PubMedPubMedCentralCrossRef
78.
79.
80.
go back to reference Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.PubMedCrossRef Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.PubMedCrossRef
81.
82.
go back to reference Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.PubMedPubMedCentralCrossRef Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.PubMedPubMedCentralCrossRef
83.
go back to reference Nicolson GL, Conklin KA. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis. 2008;25:161–9.PubMedCrossRef Nicolson GL, Conklin KA. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis. 2008;25:161–9.PubMedCrossRef
84.
go back to reference Janas MM, Wang B, Harris AS, Aguiar M, Shaffer JM, Subrahmanyam YV, et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human ago proteins. RNA. 2012;18:2041–55.PubMedPubMedCentralCrossRef Janas MM, Wang B, Harris AS, Aguiar M, Shaffer JM, Subrahmanyam YV, et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human ago proteins. RNA. 2012;18:2041–55.PubMedPubMedCentralCrossRef
85.
go back to reference Flores O, Kennedy EM, Skalsky RL, Cullen BR. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 2014;42:4629–39.PubMedPubMedCentralCrossRef Flores O, Kennedy EM, Skalsky RL, Cullen BR. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 2014;42:4629–39.PubMedPubMedCentralCrossRef
86.
go back to reference La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A. 2015;112:767–72.PubMedPubMedCentralCrossRef La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A. 2015;112:767–72.PubMedPubMedCentralCrossRef
87.
go back to reference Lewis CA Jr, Crayle J, Zhou S, Swanstrom R, Wolfenden R. Cytosine deaminationand the precipitous decline of spontaneous mutation during Earth’s history. Proc NatlAcad Sci U S A. 2016;113:8194–9.CrossRef Lewis CA Jr, Crayle J, Zhou S, Swanstrom R, Wolfenden R. Cytosine deaminationand the precipitous decline of spontaneous mutation during Earth’s history. Proc NatlAcad Sci U S A. 2016;113:8194–9.CrossRef
88.
go back to reference Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC enzymes: mutagenic fuel for Cancer evolution and heterogeneity. Cancer Discov. 2015;5:704–12.PubMedPubMedCentralCrossRef Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC enzymes: mutagenic fuel for Cancer evolution and heterogeneity. Cancer Discov. 2015;5:704–12.PubMedPubMedCentralCrossRef
89.
go back to reference Iwai N, Naraba H. Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun. 2005;331:1439–44.PubMedCrossRef Iwai N, Naraba H. Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun. 2005;331:1439–44.PubMedCrossRef
90.
91.
go back to reference Shankaran ZS, Walter CEJ, Ramanathan A, Dandapani MC, Selvaraj S, Kontham SS, et al. microRNA-146a gene polymorphism alters human colorectal cancer susceptibility and influences the expression of its target genes in toll-like receptor (TLR) pathway. Meta Gene. 2020;24:100654.CrossRef Shankaran ZS, Walter CEJ, Ramanathan A, Dandapani MC, Selvaraj S, Kontham SS, et al. microRNA-146a gene polymorphism alters human colorectal cancer susceptibility and influences the expression of its target genes in toll-like receptor (TLR) pathway. Meta Gene. 2020;24:100654.CrossRef
93.
go back to reference Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, et al. Clock-like mutational processes in human somatic cells. Nat Genet. 2015;47:1402–7.PubMedPubMedCentralCrossRef Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, et al. Clock-like mutational processes in human somatic cells. Nat Genet. 2015;47:1402–7.PubMedPubMedCentralCrossRef
94.
go back to reference Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.PubMedPubMedCentralCrossRef Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.PubMedPubMedCentralCrossRef
95.
go back to reference Yizhak K, Aguet F, Kim J, Hess JM, Kubler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364:eaaw0726. Yizhak K, Aguet F, Kim J, Hess JM, Kubler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364:eaaw0726.
96.
go back to reference Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–6.PubMedPubMedCentralCrossRef Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–6.PubMedPubMedCentralCrossRef
97.
go back to reference Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592:692–702.PubMedCrossRef Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592:692–702.PubMedCrossRef
98.
99.
go back to reference Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:1553–8.PubMedPubMedCentralCrossRef Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:1553–8.PubMedPubMedCentralCrossRef
100.
go back to reference Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28:4322–30.PubMedPubMedCentralCrossRef Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28:4322–30.PubMedPubMedCentralCrossRef
101.
go back to reference Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010;107:13111–6.PubMedPubMedCentralCrossRef Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010;107:13111–6.PubMedPubMedCentralCrossRef
102.
go back to reference Schaefer A, Im HI, Veno MT, Fowler CD, Min A, Intrator A, et al. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med. 2010;207:1843–51.PubMedPubMedCentralCrossRef Schaefer A, Im HI, Veno MT, Fowler CD, Min A, Intrator A, et al. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med. 2010;207:1843–51.PubMedPubMedCentralCrossRef
103.
go back to reference Bailey RR, Peddie BA. Enoxacin for the treatment of urinary tract infection. N Z Med J. 1985;98:286–8.PubMed Bailey RR, Peddie BA. Enoxacin for the treatment of urinary tract infection. N Z Med J. 1985;98:286–8.PubMed
104.
go back to reference Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008;26:933–40.PubMedPubMedCentralCrossRef Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008;26:933–40.PubMedPubMedCentralCrossRef
105.
go back to reference Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A. 2011;108:4394–9.PubMedPubMedCentralCrossRef Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A. 2011;108:4394–9.PubMedPubMedCentralCrossRef
106.
go back to reference Emde A, Eitan C, Liou LL, Libby RT, Rivkin N, Magen I, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 2015;34:2633–51.PubMedPubMedCentralCrossRef Emde A, Eitan C, Liou LL, Libby RT, Rivkin N, Magen I, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 2015;34:2633–51.PubMedPubMedCentralCrossRef
107.
go back to reference Chmielarz P, Konovalova J, Najam SS, Alter H, Piepponen TP, Erfle H, et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8:e2813.PubMedPubMedCentralCrossRef Chmielarz P, Konovalova J, Najam SS, Alter H, Piepponen TP, Erfle H, et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8:e2813.PubMedPubMedCentralCrossRef
108.
go back to reference Creus-Muncunill J, Guisado-Corcoll A, Venturi V, Pantano L, Escaramis G, Garcia de Herreros M, et al. Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol. 2021;141:565–84.PubMedCrossRef Creus-Muncunill J, Guisado-Corcoll A, Venturi V, Pantano L, Escaramis G, Garcia de Herreros M, et al. Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol. 2021;141:565–84.PubMedCrossRef
Metadata
Title
DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases
Authors
Ashley Haluck-Kangas
Monal Patel
Bidur Paudel
Aparajitha Vaidyanathan
Andrea E. Murmann
Marcus E. Peter
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02177-1

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine