Skip to main content
Top
Published in: Brain Structure and Function 9/2017

01-12-2017 | Original Article

Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem

Authors: Ria Maxine Ruehl, Carolin Hinkel, Thomas Bauermann, Peter zu Eulenburg

Published in: Brain Structure and Function | Issue 9/2017

Login to get access

Abstract

Optokinetic eye movements are crucial for keeping a stable image on the retina during movements of the head. These eye movements can be differentiated into a cortically generated response (optokinetic look nystagmus) and the highly reflexive optokinetic stare nystagmus, which is controlled by circuits in the brainstem and cerebellum. The contributions of these infratentorial networks and their functional connectivity with the cortical eye fields are still poorly understood in humans. To map ocular motor centres in the cerebellum and brainstem, we studied stare nystagmus using small-field optokinetic stimuli in the horizontal and vertical directions in 22 healthy subjects. We were able to differentiate ocular motor areas of the pontine brainstem and midbrain in vivo for the first time. Direction and velocity-dependent activations were found in the pontine brainstem (nucleus reticularis, tegmenti pontis, and paramedian pontine reticular formation), the uvula, flocculus, and cerebellar tonsils. The ocular motor vermis, on the other hand, responded to constant and accelerating velocity stimulation. Moreover, deactivation patterns depict a governing role for the cerebellar tonsils in ocular motor control. Functional connectivity results of these hubs reveal the close integration of cortico-cerebellar ocular motor and vestibular networks in humans. Adding to the cortical concept of a right-hemispheric predominance for visual-spatial processing, we found a complementary left-sided cerebellar dominance for our ocular motor task. A deeper understanding of the role of the cerebellum and especially the cerebellar tonsils for eye movement control in a clinical context seems vitally important and is now feasible with functional neuroimaging.
Literature
go back to reference Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei: a variability study. vol Bd. 17. Raven Press Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei: a variability study. vol Bd. 17. Raven Press
go back to reference Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496PubMed Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496PubMed
go back to reference Bense S et al (2006b) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation experimental brain research 174:312–323PubMed Bense S et al (2006b) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation experimental brain research 174:312–323PubMed
go back to reference Boileau I, Beauregar M, Beuter A, Breault C, Lecours AR (2002) Optokinetic stimulation and the egocentred midsagittal plane: an fMRI study. NeuroReport 13:61–65CrossRefPubMed Boileau I, Beauregar M, Beuter A, Breault C, Lecours AR (2002) Optokinetic stimulation and the egocentred midsagittal plane: an fMRI study. NeuroReport 13:61–65CrossRefPubMed
go back to reference Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain J Neurol 121(Pt 9):1749–1758CrossRef Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain J Neurol 121(Pt 9):1749–1758CrossRef
go back to reference Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586CrossRefPubMed Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586CrossRefPubMed
go back to reference Buttner U, Buttner-Ennever JA, Henn V (1977) Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res 130:239–252CrossRefPubMed Buttner U, Buttner-Ennever JA, Henn V (1977) Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res 130:239–252CrossRefPubMed
go back to reference Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral
go back to reference Crossland WJ, Hu XJ, Rafols JA (1994) Morphological study of the rostral interstitial nucleus of the medial longitudinal fasciculus in the monkey, Macaca mulatta, by Nissl, Golgi, and computer reconstruction and rotation methods. J Comp Neurol 347:47–63. doi:10.1002/cne.903470105 CrossRefPubMed Crossland WJ, Hu XJ, Rafols JA (1994) Morphological study of the rostral interstitial nucleus of the medial longitudinal fasciculus in the monkey, Macaca mulatta, by Nissl, Golgi, and computer reconstruction and rotation methods. J Comp Neurol 347:47–63. doi:10.​1002/​cne.​903470105 CrossRefPubMed
go back to reference de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain J Neurol 117(Pt 5):1039–1054CrossRef de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain J Neurol 117(Pt 5):1039–1054CrossRef
go back to reference Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain J Neurol 121(Pt 8):1479–1495CrossRef Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain J Neurol 121(Pt 8):1479–1495CrossRef
go back to reference Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155CrossRefPubMed Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155CrossRefPubMed
go back to reference Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003a) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007CrossRefPubMed Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003a) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007CrossRefPubMed
go back to reference Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003b) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127. doi:10.1007/s00221-002-1267-6 CrossRefPubMed Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003b) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127. doi:10.​1007/​s00221-002-1267-6 CrossRefPubMed
go back to reference Friston KJ, Frith C, Turner R, Frackowiak RSJ (1995a) Characterizing evoked hemodynamics with fMRI NeuroImage 2:157–165PubMed Friston KJ, Frith C, Turner R, Frackowiak RSJ (1995a) Characterizing evoked hemodynamics with fMRI NeuroImage 2:157–165PubMed
go back to reference Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
go back to reference Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126:149–159CrossRefPubMed Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126:149–159CrossRefPubMed
go back to reference Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot-Deseilligny C (1998) Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183CrossRefPubMed Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot-Deseilligny C (1998) Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183CrossRefPubMed
go back to reference Gerrits N (1990) Vestibular nuclear complex. The human nervous system. Academic, Philadelphia, pp 863–888CrossRef Gerrits N (1990) Vestibular nuclear complex. The human nervous system. Academic, Philadelphia, pp 863–888CrossRef
go back to reference Giaschi D et al (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45:772–781CrossRefPubMed Giaschi D et al (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45:772–781CrossRefPubMed
go back to reference Glasauer S, Stephan T, Kalla R, Marti S, Straumann D (2009) Up-down asymmetry of cerebellar activation during vertical pursuit eye movements. Cerebellum (London, England) 8:385–388. doi:10.1007/s12311-009-0109-5 Glasauer S, Stephan T, Kalla R, Marti S, Straumann D (2009) Up-down asymmetry of cerebellar activation during vertical pursuit eye movements. Cerebellum (London, England) 8:385–388. doi:10.​1007/​s12311-009-0109-5
go back to reference Hasegawa T, Kato I, Harada K, Ikarashi T, Yoshida M, Koike Y (1994) The effect of uvulonodular lesions on horizontal optokinetic nystagmus and optokinetic after-nystagmus in cats. Acta Otolaryngol Suppl 511:126–130CrossRefPubMed Hasegawa T, Kato I, Harada K, Ikarashi T, Yoshida M, Koike Y (1994) The effect of uvulonodular lesions on horizontal optokinetic nystagmus and optokinetic after-nystagmus in cats. Acta Otolaryngol Suppl 511:126–130CrossRefPubMed
go back to reference Heinen SJ, Keller EL (1996) The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res 110:1–14CrossRefPubMed Heinen SJ, Keller EL (1996) The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res 110:1–14CrossRefPubMed
go back to reference Horn AK, Buttner U, Buttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Otorhinolaryngol 55:1–25PubMed Horn AK, Buttner U, Buttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Otorhinolaryngol 55:1–25PubMed
go back to reference Igarashi M, Takeda N, Chae S (1992) Uvula-nodulus and gravity direction (a study on vertical optokinetic-oculomotor functions). Acta Astronaut 27:25–30CrossRefPubMed Igarashi M, Takeda N, Chae S (1992) Uvula-nodulus and gravity direction (a study on vertical optokinetic-oculomotor functions). Acta Astronaut 27:25–30CrossRefPubMed
go back to reference Ilg UJ, Hoffmann KP (1991) Responses of monkey nucleus of the optic tract neurons during pursuit and fixation. Neurosci Res 12:101–110CrossRefPubMed Ilg UJ, Hoffmann KP (1991) Responses of monkey nucleus of the optic tract neurons during pursuit and fixation. Neurosci Res 12:101–110CrossRefPubMed
go back to reference Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8:92–105CrossRefPubMed Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8:92–105CrossRefPubMed
go back to reference Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS (2014) Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol 75:429–434CrossRefPubMed Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS (2014) Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol 75:429–434CrossRefPubMed
go back to reference Leigh RJ, Zee DS (2006) The neurology of eye movements. Contemporary neurology series, 4th edn, vol 70. Oxford Univ Press, Oxford Leigh RJ, Zee DS (2006) The neurology of eye movements. Contemporary neurology series, 4th edn, vol 70. Oxford Univ Press, Oxford
go back to reference Mustari MJ, Fuchs AF (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J Neurophysiol 64:77–90PubMed Mustari MJ, Fuchs AF (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J Neurophysiol 64:77–90PubMed
go back to reference Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S (2009) Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol 101:934–947. doi:10.1152/jn.90440.2009 CrossRefPubMed Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S (2009) Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol 101:934–947. doi:10.​1152/​jn.​90440.​2009 CrossRefPubMed
go back to reference Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25CrossRefPubMed Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25CrossRefPubMed
go back to reference Schmahmann JD (2000) MRI atlas of the human cerebellum. Academic Press, San Diego Schmahmann JD (2000) MRI atlas of the human cerebellum. Academic Press, San Diego
go back to reference Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic Press, San Diego Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic Press, San Diego
go back to reference Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN (2008) fMRI of optokinetic eye movements with and without a contribution of smooth pursuit. J Neuroimaging Off J Am Soc Neuroimaging 18:158–167. doi:10.1111/j.1552-6569.2007.00204.x Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN (2008) fMRI of optokinetic eye movements with and without a contribution of smooth pursuit. J Neuroimaging Off J Am Soc Neuroimaging 18:158–167. doi:10.​1111/​j.​1552-6569.​2007.​00204.​x
go back to reference Tan HS, Collewijn H, Van der Steen J (1992) Optokinetic nystagmus in the rabbit and its modulation by bilateral microinjection of carbachol in the cerebellar flocculus. Exp Brain Res 90:456–468CrossRefPubMed Tan HS, Collewijn H, Van der Steen J (1992) Optokinetic nystagmus in the rabbit and its modulation by bilateral microinjection of carbachol in the cerebellar flocculus. Exp Brain Res 90:456–468CrossRefPubMed
go back to reference Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126. doi:10.1002/cne.903370108 CrossRefPubMed Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126. doi:10.​1002/​cne.​903370108 CrossRefPubMed
go back to reference Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C (1995) Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 58:91–94CrossRefPubMedPubMedCentral Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C (1995) Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 58:91–94CrossRefPubMedPubMedCentral
go back to reference Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2012) Visuomotor cerebellum in human and nonhuman primates. Cerebellum (London, England) 11:392–410. doi:10.1007/s12311-010-0204-7 Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2012) Visuomotor cerebellum in human and nonhuman primates. Cerebellum (London, England) 11:392–410. doi:10.​1007/​s12311-010-0204-7
go back to reference Waespe W, Cohen B (1983) Flocculectomy and unit activity in the vestibular nuclei during visual–vestibular interactions. Exp Brain Res 51:23–35CrossRefPubMed Waespe W, Cohen B (1983) Flocculectomy and unit activity in the vestibular nuclei during visual–vestibular interactions. Exp Brain Res 51:23–35CrossRefPubMed
go back to reference Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263. doi:10.1007/s00221-002-1241-3 CrossRefPubMed Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263. doi:10.​1007/​s00221-002-1241-3 CrossRefPubMed
go back to reference Yakushin SB, Gizzi M, Reisine H, Raphan T, Buttner-Ennever J, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp Brain Res 131:433–447CrossRefPubMedPubMedCentral Yakushin SB, Gizzi M, Reisine H, Raphan T, Buttner-Ennever J, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp Brain Res 131:433–447CrossRefPubMedPubMedCentral
go back to reference Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899PubMed Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899PubMed
go back to reference Zhang Y, Partsalis AM, Highstein SM (1993) Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. J Neurophysiol 69:642–645PubMed Zhang Y, Partsalis AM, Highstein SM (1993) Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. J Neurophysiol 69:642–645PubMed
Metadata
Title
Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem
Authors
Ria Maxine Ruehl
Carolin Hinkel
Thomas Bauermann
Peter zu Eulenburg
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1461-8

Other articles of this Issue 9/2017

Brain Structure and Function 9/2017 Go to the issue