Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2016

Open Access 01-12-2016 | Research

Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish

Authors: Ryann M. Fame, Jessica T. Chang, Alex Hong, Nicole A. Aponte-Santiago, Hazel Sive

Published in: Fluids and Barriers of the CNS | Issue 1/2016

Login to get access

Abstract

Background

Cerebrospinal fluid (CSF) contained within the brain ventricles contacts neuroepithelial progenitor cells during brain development. Dynamic properties of CSF movement may limit locally produced factors to specific regions of the developing brain. However, there is no study of in vivo CSF dynamics between ventricles in the embryonic brain. We address CSF movement using the zebrafish larva, during the major period of developmental neurogenesis.

Methods

CSF movement was monitored at two stages of zebrafish development: early larva [pharyngula stage; 27–30 h post-fertilization (hpf)] and late larva (hatching period; 51–54 hpf) using photoactivatable Kaede protein to calculate average maximum CSF velocity between ventricles. Potential roles for heartbeat in early CSF movement were investigated using tnnt2a mutant fish (tnnt2a −/−) and chemical [2,3 butanedione monoxime (BDM)] treatment. Cilia motility was monitored at these stages using the Tg(βact:Arl13b–GFP) transgenic fish line.

Results

In wild-type early larva there is net CSF movement from the telencephalon to the combined diencephalic/mesencephalic superventricle. This movement directionality reverses at late larval stage. CSF moves directionally from diencephalic to rhombencephalic ventricles at both stages examined, with minimal movement from rhombencephalon to diencephalon. Directional movement is partially dependent on heartbeat, as indicated in assays of tnnt2a −/− fish and after BDM treatment. Brain cilia are immotile at the early larval stage.

Conclusion

These data demonstrate directional movement of the embryonic CSF in the zebrafish model during the major period of developmental neurogenesis. A key conclusion is that CSF moves preferentially from the diencephalic into the rhombencephalic ventricle. In addition, the direction of CSF movement between telencephalic and diencephalic ventricles reverses between the early and late larval stages. CSF movement is partially dependent on heartbeat. At early larval stage, the absence of motile cilia indicates that cilia likely do not direct CSF movement. These data suggest that CSF components may be compartmentalized and could contribute to specialization of the early brain. In addition, CSF movement may also provide directional mechanical signaling.
Appendix
Available only for authorised users
Literature
5.
6.
go back to reference Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res. 2007;6(9):3537–48. doi:10.1021/pr070247w.CrossRefPubMed Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res. 2007;6(9):3537–48. doi:10.​1021/​pr070247w.CrossRefPubMed
8.
go back to reference Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS One. 2014;9:1–10. doi:10.1371/journal.pone.0088810.CrossRef Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS One. 2014;9:1–10. doi:10.​1371/​journal.​pone.​0088810.CrossRef
9.
go back to reference Gato Á, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol. 2005;284:475–84. doi:10.1002/ar.a.20185.CrossRefPubMed Gato Á, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol. 2005;284:475–84. doi:10.​1002/​ar.​a.​20185.CrossRefPubMed
12.
go back to reference Pollay M, Curl F. Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967;213(4):1031–8.PubMed Pollay M, Curl F. Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967;213(4):1031–8.PubMed
13.
go back to reference Sonnenberg H, Solomon S, Frazier DT. Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967;124(4):1316–20.CrossRefPubMed Sonnenberg H, Solomon S, Frazier DT. Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967;124(4):1316–20.CrossRefPubMed
14.
go back to reference Davson H. The physiology of the cerebrospinal fluid. London: Churchill; 1967. Davson H. The physiology of the cerebrospinal fluid. London: Churchill; 1967.
15.
go back to reference Bakshi R, Caruthers SD, Janardhan V, Wasay M. Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. AJNR Am J Neuroradiol. 2000;21(3):503–8.PubMed Bakshi R, Caruthers SD, Janardhan V, Wasay M. Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. AJNR Am J Neuroradiol. 2000;21(3):503–8.PubMed
18.
go back to reference Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M. Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol. 1997;94(5):493–8.CrossRefPubMed Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M. Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol. 1997;94(5):493–8.CrossRefPubMed
21.
23.
go back to reference Westerfield M. The zebrafish book. a guide for the laboratory use of zebrafish (Danio rerio). 3rd ed. Eugene: University of Oregon Press; 1995. Westerfield M. The zebrafish book. a guide for the laboratory use of zebrafish (Danio rerio). 3rd ed. Eugene: University of Oregon Press; 1995.
25.
go back to reference Borovina A, Superina S, Voskas D, Ciruna B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol. 2010;12(4):407–12. doi:10.1038/ncb2042.CrossRefPubMed Borovina A, Superina S, Voskas D, Ciruna B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol. 2010;12(4):407–12. doi:10.​1038/​ncb2042.CrossRefPubMed
28.
go back to reference Strykowski JL, Schech JM. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 2015;54(1):81–4.PubMed Strykowski JL, Schech JM. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 2015;54(1):81–4.PubMed
30.
go back to reference Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRefPubMed Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRefPubMed
31.
34.
go back to reference Lowery LA, Sive H. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development. 2005;132:2057–67. doi:10.1242/dev.01791.CrossRefPubMed Lowery LA, Sive H. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development. 2005;132:2057–67. doi:10.​1242/​dev.​01791.CrossRefPubMed
35.
go back to reference Sheehan DC, Hrapchak BB. Theory and practice of histotechnology. 2nd ed. Columbus: Battelle Press; 1980. Sheehan DC, Hrapchak BB. Theory and practice of histotechnology. 2nd ed. Columbus: Battelle Press; 1980.
36.
38.
go back to reference Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. 2005;132:1907–21. doi:10.1242/dev.01772.CrossRefPubMed Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. 2005;132:1907–21. doi:10.​1242/​dev.​01772.CrossRefPubMed
39.
go back to reference Verrecchia F, Herve JC. Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Am J Physiol. 1997;272(3 Pt 1):C875–85.PubMed Verrecchia F, Herve JC. Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Am J Physiol. 1997;272(3 Pt 1):C875–85.PubMed
40.
go back to reference Schlichter LC, Pahapill PA, Chung I. Dual action of 2,3-butanedione monoxime (BDM) on K+ current in human T lymphocytes. J Pharmacol Exp Ther. 1992;261(2):438–46.PubMed Schlichter LC, Pahapill PA, Chung I. Dual action of 2,3-butanedione monoxime (BDM) on K+ current in human T lymphocytes. J Pharmacol Exp Ther. 1992;261(2):438–46.PubMed
41.
go back to reference Lopatin AN, Nichols CG. 2,3-Butanedione monoxime (BDM) inhibition of delayed rectifier DRK1 (Kv2.1) potassium channels expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1993;265(2):1011–6.PubMed Lopatin AN, Nichols CG. 2,3-Butanedione monoxime (BDM) inhibition of delayed rectifier DRK1 (Kv2.1) potassium channels expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1993;265(2):1011–6.PubMed
42.
go back to reference Ferreira G, Artigas P, Pizarro G, Brum G. Butanedione monoxime promotes voltage-dependent inactivation of l-type calcium channels in heart. Effects on gating currents. J Mol Cell Cardiol. 1997;29(2):777–87.CrossRefPubMed Ferreira G, Artigas P, Pizarro G, Brum G. Butanedione monoxime promotes voltage-dependent inactivation of l-type calcium channels in heart. Effects on gating currents. J Mol Cell Cardiol. 1997;29(2):777–87.CrossRefPubMed
44.
go back to reference Chilvers MA, O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax. 2000;55(4):314–7.CrossRefPubMedPubMedCentral Chilvers MA, O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax. 2000;55(4):314–7.CrossRefPubMedPubMedCentral
45.
go back to reference Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. Hoboken: Wiley-Interscience; 2005.CrossRef Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. Hoboken: Wiley-Interscience; 2005.CrossRef
48.
go back to reference Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004;77:505–19.CrossRefPubMed Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004;77:505–19.CrossRefPubMed
51.
go back to reference Bito LZ, Davson H. Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966;14(3):264–80.CrossRefPubMed Bito LZ, Davson H. Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966;14(3):264–80.CrossRefPubMed
Metadata
Title
Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish
Authors
Ryann M. Fame
Jessica T. Chang
Alex Hong
Nicole A. Aponte-Santiago
Hazel Sive
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2016
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-016-0036-z

Other articles of this Issue 1/2016

Fluids and Barriers of the CNS 1/2016 Go to the issue