Skip to main content
Top
Published in: Molecular Cancer 1/2024

Open Access 01-12-2024 | Diffuse Large B-Cell Lymphoma | Correspondence

Activation-induced cytidine deaminase causes recurrent splicing mutations in diffuse large B-cell lymphoma

Authors: Maria S. Benitez-Cantos, Carlos Cano, Marta Cuadros, Pedro P. Medina

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma. A major mutagenic process in DLBCL is aberrant somatic hypermutation (aSHM) by activation-induced cytidine deaminase (AID), which occurs preferentially at RCH/TW sequence motifs proximal to transcription start sites. Splice sequences are highly conserved, rich in RCH/TW motifs, and recurrently mutated in DLBCL. Therefore, we hypothesized that aSHM may cause recurrent splicing mutations in DLBCL. In a meta-cohort of > 1,800 DLBCLs, we found that 77.5% of splicing mutations in 29 recurrently mutated genes followed aSHM patterns. In addition, in whole-genome sequencing (WGS) data from 153 DLBCLs, proximal mutations in splice sequences, especially in donors, were significantly enriched in RCH/TW motifs (p < 0.01). We validated this enrichment in two additional DLBCL cohorts (N > 2,000; p < 0.0001) and confirmed its absence in 12 cancer types without aSHM (N > 6,300). Comparing sequencing data from mouse models with and without AID activity showed that the splice donor sequences were the top genomic feature enriched in AID-induced mutations (p < 0.0001). Finally, we observed that most AID-related splice site mutations are clonal within a sample, indicating that aSHM may cause early loss-of-function events in lymphomagenesis. Overall, these findings support that AID causes an overrepresentation of clonal splicing mutations in DLBCL.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.CrossRefPubMedPubMedCentral Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.CrossRefPubMedPubMedCentral
2.
go back to reference Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol. 2022;196(4):814–29.CrossRefPubMed Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol. 2022;196(4):814–29.CrossRefPubMed
3.
go back to reference Hübschmann D, Kleinheinz K, Wagener R, Bernhart SH, López C, Toprak UH, et al. Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia. 2021;35(7):2002–16.CrossRefPubMedPubMedCentral Hübschmann D, Kleinheinz K, Wagener R, Bernhart SH, López C, Toprak UH, et al. Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia. 2021;35(7):2002–16.CrossRefPubMedPubMedCentral
4.
go back to reference Alkodsi A, Cervera A, Zhang K, Louhimo R, Meriranta L, Pasanen A, et al. Distinct subtypes of diffuse large B-cell lymphoma defined by hypermutated genes. Leukemia. 2019;33(11):2662–72.CrossRefPubMed Alkodsi A, Cervera A, Zhang K, Louhimo R, Meriranta L, Pasanen A, et al. Distinct subtypes of diffuse large B-cell lymphoma defined by hypermutated genes. Leukemia. 2019;33(11):2662–72.CrossRefPubMed
5.
6.
go back to reference Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90.CrossRefPubMedPubMedCentral Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90.CrossRefPubMedPubMedCentral
7.
go back to reference Ye X, Ren W, Liu D, Li X, Li W, Wang X, et al. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med. 2021;218(2):e20200573.CrossRefPubMed Ye X, Ren W, Liu D, Li X, Li W, Wang X, et al. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med. 2021;218(2):e20200573.CrossRefPubMed
8.
go back to reference Gordon MS, Kanegai CM, Doerr JR, Wall R. Somatic hypermutation of the B cell receptor genes B29 ( Ig β, CD79b) and mb1 ( Ig α, CD79a). Proc Natl Acad Sci. 2003;100(7):4126–31.ADSCrossRefPubMedPubMedCentral Gordon MS, Kanegai CM, Doerr JR, Wall R. Somatic hypermutation of the B cell receptor genes B29 ( Ig β, CD79b) and mb1 ( Ig α, CD79a). Proc Natl Acad Sci. 2003;100(7):4126–31.ADSCrossRefPubMedPubMedCentral
9.
go back to reference Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 2009;30(4):173–81.CrossRefPubMed Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 2009;30(4):173–81.CrossRefPubMed
11.
go back to reference Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H, et al. A comprehensive characterization of cis -acting splicing-associated variants in human cancer. Genome Res. 2018;28(8):1111–25.CrossRefPubMedPubMedCentral Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H, et al. A comprehensive characterization of cis -acting splicing-associated variants in human cancer. Genome Res. 2018;28(8):1111–25.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34(2):211-224.e6.CrossRefPubMedPubMedCentral Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34(2):211-224.e6.CrossRefPubMedPubMedCentral
14.
go back to reference Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 2018;23(1):270-281.e3.CrossRefPubMedPubMedCentral Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 2018;23(1):270-281.e3.CrossRefPubMedPubMedCentral
15.
go back to reference Andrades A, Álvarez-Pérez JC, Patiño-Mercau JR, Cuadros M, Baliñas-Gavira C, Medina PP. Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139(15):2406–10.CrossRefPubMed Andrades A, Álvarez-Pérez JC, Patiño-Mercau JR, Cuadros M, Baliñas-Gavira C, Medina PP. Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139(15):2406–10.CrossRefPubMed
16.
go back to reference Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med. 2018;215(3):761–71.CrossRefPubMedPubMedCentral Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med. 2018;215(3):761–71.CrossRefPubMedPubMedCentral
17.
go back to reference Rogozin IB, Diaz M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G: C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol Baltim Md 1950. 2004;172(6):3382–4. Rogozin IB, Diaz M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G: C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol Baltim Md 1950. 2004;172(6):3382–4.
18.
go back to reference Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, et al. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer. 2023;22(1):39.CrossRefPubMedPubMedCentral Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, et al. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer. 2023;22(1):39.CrossRefPubMedPubMedCentral
19.
go back to reference Baliñas-Gavira C, Rodríguez MI, Andrades A, Cuadros M, Álvarez-Pérez JC, Álvarez-Prado ÁF, et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia. 2020;34(10):2722–35.CrossRefPubMed Baliñas-Gavira C, Rodríguez MI, Andrades A, Cuadros M, Álvarez-Pérez JC, Álvarez-Prado ÁF, et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia. 2020;34(10):2722–35.CrossRefPubMed
20.
go back to reference Arthur SE, Jiang A, Grande BM, Alcaide M, Cojocaru R, Rushton CK, et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun. 2018;9(1):4001.ADSCrossRefPubMedPubMedCentral Arthur SE, Jiang A, Grande BM, Alcaide M, Cojocaru R, Rushton CK, et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun. 2018;9(1):4001.ADSCrossRefPubMedPubMedCentral
21.
go back to reference Bergstrom EN, Luebeck J, Petljak M, Khandekar A, Barnes M, Zhang T, et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature. 2022;602(7897):510–7.ADSCrossRefPubMedPubMedCentral Bergstrom EN, Luebeck J, Petljak M, Khandekar A, Barnes M, Zhang T, et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature. 2022;602(7897):510–7.ADSCrossRefPubMedPubMedCentral
22.
go back to reference Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30.ADSCrossRefPubMedPubMedCentral Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30.ADSCrossRefPubMedPubMedCentral
Metadata
Title
Activation-induced cytidine deaminase causes recurrent splicing mutations in diffuse large B-cell lymphoma
Authors
Maria S. Benitez-Cantos
Carlos Cano
Marta Cuadros
Pedro P. Medina
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-01960-w

Other articles of this Issue 1/2024

Molecular Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine