Skip to main content
Top
Published in: Molecular Cancer 1/2024

Open Access 01-12-2024 | Metastasis | Research

The incorporation of acetylated LAP-TGF-β1 proteins into exosomes promotes TNBC cell dissemination in lung micro-metastasis

Authors: Pei Yu, Yubao Han, Lulu Meng, Zengying Tang, Zhiwei Jin, Zhenzhen Zhang, Yunjiang Zhou, Jun Luo, Jianguang Luo, Chao Han, Chao Zhang, Lingyi Kong

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-β1, the principal form of exosomal TGF-β1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-β signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-β1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-β1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-β1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674.PubMedCrossRef Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674.PubMedCrossRef
2.
go back to reference Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.PubMedPubMedCentralCrossRef Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.PubMedPubMedCentralCrossRef
3.
go back to reference Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, et al. Aspartate beta-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol. 2019;12:144.PubMedPubMedCentralCrossRef Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, et al. Aspartate beta-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol. 2019;12:144.PubMedPubMedCentralCrossRef
4.
go back to reference Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17–31.PubMedCrossRef Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17–31.PubMedCrossRef
5.
go back to reference Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev. 2021;178:113909.PubMedCrossRef Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev. 2021;178:113909.PubMedCrossRef
6.
go back to reference Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS, Kallio HML, Hognas G, Annala M, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520:353–7.PubMedPubMedCentralCrossRef Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS, Kallio HML, Hognas G, Annala M, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520:353–7.PubMedPubMedCentralCrossRef
7.
go back to reference Blasco MT, Espuny I, Gomis RR. Ecology and evolution of dormant metastasis. Trends Cancer. 2022;8:570–82.PubMedCrossRef Blasco MT, Espuny I, Gomis RR. Ecology and evolution of dormant metastasis. Trends Cancer. 2022;8:570–82.PubMedCrossRef
8.
go back to reference Brown D, Smeets D, Szekely B, Larsimont D, Szasz AM, Adnet PY, Rothe F, Rouas G, Nagy ZI, Farago Z, et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat Commun. 2017;8:14944.PubMedPubMedCentralCrossRef Brown D, Smeets D, Szekely B, Larsimont D, Szasz AM, Adnet PY, Rothe F, Rouas G, Nagy ZI, Farago Z, et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat Commun. 2017;8:14944.PubMedPubMedCentralCrossRef
9.
go back to reference Ullah I, Karthik GM, Alkodsi A, Kjallquist U, Stalhammar G, Lovrot J, Martinez NF, Lagergren J, Hautaniemi S, Hartman J, Bergh J. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Invest. 2018;128:1355–70.PubMedPubMedCentralCrossRef Ullah I, Karthik GM, Alkodsi A, Kjallquist U, Stalhammar G, Lovrot J, Martinez NF, Lagergren J, Hautaniemi S, Hartman J, Bergh J. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Invest. 2018;128:1355–70.PubMedPubMedCentralCrossRef
11.
go back to reference Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.PubMedPubMedCentralCrossRef Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.PubMedPubMedCentralCrossRef
12.
go back to reference Lyden D, Ghajar CM, Correia AL, Aguirre-Ghiso JA, Cai S, Rescigno M, Zhang P, Hu G, Fendt SM, Boire A, et al. Metastasis. Cancer Cell. 2022;40:787–91.PubMedPubMedCentralCrossRef Lyden D, Ghajar CM, Correia AL, Aguirre-Ghiso JA, Cai S, Rescigno M, Zhang P, Hu G, Fendt SM, Boire A, et al. Metastasis. Cancer Cell. 2022;40:787–91.PubMedPubMedCentralCrossRef
13.
go back to reference Qi M, Xia Y, Wu Y, Zhang Z, Wang X, Lu L, Dai C, Song Y, Xu K, Ji W, Zhan L. Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun. 2022;13:897.PubMedPubMedCentralCrossRef Qi M, Xia Y, Wu Y, Zhang Z, Wang X, Lu L, Dai C, Song Y, Xu K, Ji W, Zhan L. Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun. 2022;13:897.PubMedPubMedCentralCrossRef
14.
go back to reference Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. Tumor-derived exosomal mir-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.PubMedPubMedCentralCrossRef Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. Tumor-derived exosomal mir-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.PubMedPubMedCentralCrossRef
15.
go back to reference Liang M, Chen X, Wang L, Qin L, Wang H, Sun Z, Zhao W, Geng B. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res. 2020;39:176.PubMedPubMedCentralCrossRef Liang M, Chen X, Wang L, Qin L, Wang H, Sun Z, Zhao W, Geng B. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res. 2020;39:176.PubMedPubMedCentralCrossRef
16.
go back to reference Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.PubMedCrossRef Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.PubMedCrossRef
17.
go back to reference Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, et al. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther. 2022;29:1439–51.PubMedPubMedCentralCrossRef Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, et al. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther. 2022;29:1439–51.PubMedPubMedCentralCrossRef
18.
go back to reference Martinez VG, O’Neill S, Salimu J, Breslin S, Clayton A, Crown J, O’Driscoll L. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology. 2017;6:e1362530.PubMedPubMedCentralCrossRef Martinez VG, O’Neill S, Salimu J, Breslin S, Clayton A, Crown J, O’Driscoll L. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology. 2017;6:e1362530.PubMedPubMedCentralCrossRef
19.
go back to reference Tan C, Sun W, Xu Z, Zhu S, Hu W, Wang X, Zhang Y, Zhang G, Wang Z, Xu Y, Tang J. Small extracellular vesicles deliver TGF-beta1 and promote adriamycin resistance in breast cancer cells. Mol Oncol. 2021;15:1528–42.PubMedPubMedCentralCrossRef Tan C, Sun W, Xu Z, Zhu S, Hu W, Wang X, Zhang Y, Zhang G, Wang Z, Xu Y, Tang J. Small extracellular vesicles deliver TGF-beta1 and promote adriamycin resistance in breast cancer cells. Mol Oncol. 2021;15:1528–42.PubMedPubMedCentralCrossRef
20.
go back to reference Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, et al. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun. 2020;11:2331.PubMedPubMedCentralCrossRef Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, et al. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun. 2020;11:2331.PubMedPubMedCentralCrossRef
21.
go back to reference Nakayama F, Miyoshi M, Kimoto A, Kawano A, Miyashita K, Kamoshida S, Shimizu K, Hori Y. Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor beta1. Med Mol Morphol. 2022;55:227–35.PubMedPubMedCentralCrossRef Nakayama F, Miyoshi M, Kimoto A, Kawano A, Miyashita K, Kamoshida S, Shimizu K, Hori Y. Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor beta1. Med Mol Morphol. 2022;55:227–35.PubMedPubMedCentralCrossRef
22.
go back to reference Yang X, Zhang Y, Zhang Y, Li H, Li L, Wu Y, Chen X, Qiu L, Han J, Wang Z. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduct Target Ther. 2023;8:102.PubMedPubMedCentralCrossRef Yang X, Zhang Y, Zhang Y, Li H, Li L, Wu Y, Chen X, Qiu L, Han J, Wang Z. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduct Target Ther. 2023;8:102.PubMedPubMedCentralCrossRef
23.
go back to reference Da X, Li Z, Huang X, He Z, Yu Y, Tian T, Xu C, Yao Y, Wang QK. AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin alpha7-mediated inhibition of TGF-beta1 maturation and ERK1/2 signaling. Nat Commun. 2023;14:2265.PubMedPubMedCentralCrossRef Da X, Li Z, Huang X, He Z, Yu Y, Tian T, Xu C, Yao Y, Wang QK. AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin alpha7-mediated inhibition of TGF-beta1 maturation and ERK1/2 signaling. Nat Commun. 2023;14:2265.PubMedPubMedCentralCrossRef
24.
go back to reference Shelke GV, Yin Y, Jang SC, Lasser C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lotvall J. Endosomal signalling via exosome surface TGFbeta-1. J Extracell Vesicles. 2019;8:1650458.PubMedPubMedCentralCrossRef Shelke GV, Yin Y, Jang SC, Lasser C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lotvall J. Endosomal signalling via exosome surface TGFbeta-1. J Extracell Vesicles. 2019;8:1650458.PubMedPubMedCentralCrossRef
25.
go back to reference Stockis J, Dedobbeleer O, Lucas S. Role of GARP in the activation of latent TGF-beta1. Mol Biosyst. 2017;13:1925–35.PubMedCrossRef Stockis J, Dedobbeleer O, Lucas S. Role of GARP in the activation of latent TGF-beta1. Mol Biosyst. 2017;13:1925–35.PubMedCrossRef
26.
go back to reference Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.PubMedCrossRef Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.PubMedCrossRef
28.
go back to reference Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, et al. Endothelium and subendothelial matrix mechanics modulate Cancer Cell Transendothelial Migration. Adv Sci (Weinh). 2023;10:e2206554.PubMedCrossRef Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, et al. Endothelium and subendothelial matrix mechanics modulate Cancer Cell Transendothelial Migration. Adv Sci (Weinh). 2023;10:e2206554.PubMedCrossRef
29.
go back to reference Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, et al. Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395.PubMedPubMedCentralCrossRef Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, et al. Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395.PubMedPubMedCentralCrossRef
30.
go back to reference Rodrigues G, Hoshino A, Kenific CM, Matei IR, Steiner L, Freitas D, Kim HS, Oxley PR, Scandariato I, Casanova-Salas I, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21:1403–12.PubMedPubMedCentralCrossRef Rodrigues G, Hoshino A, Kenific CM, Matei IR, Steiner L, Freitas D, Kim HS, Oxley PR, Scandariato I, Casanova-Salas I, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21:1403–12.PubMedPubMedCentralCrossRef
31.
go back to reference Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles. 2020;9:1722385.PubMedPubMedCentralCrossRef Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles. 2020;9:1722385.PubMedPubMedCentralCrossRef
32.
go back to reference Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156.PubMedPubMedCentralCrossRef Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156.PubMedPubMedCentralCrossRef
33.
go back to reference Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.PubMedCrossRef Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.PubMedCrossRef
34.
go back to reference Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, Dagbay KB, Brueckner CT, Nikiforov A, Danehy FT, et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med. 2020;12:eaay8456.PubMedCrossRef Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, Dagbay KB, Brueckner CT, Nikiforov A, Danehy FT, et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med. 2020;12:eaay8456.PubMedCrossRef
35.
go back to reference Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Reviews Clin Oncol. 2020;18:9–34.CrossRef Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Reviews Clin Oncol. 2020;18:9–34.CrossRef
36.
go back to reference van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef
37.
go back to reference Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30. sup pp 11–13.PubMedCrossRef Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30. sup pp 11–13.PubMedCrossRef
38.
go back to reference Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.PubMedCrossRef Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.PubMedCrossRef
39.
go back to reference Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, et al. A translocation pathway for vesicle-mediated unconventional protein secretion. Cell. 2020;181:637–e652615.PubMedCrossRef Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, et al. A translocation pathway for vesicle-mediated unconventional protein secretion. Cell. 2020;181:637–e652615.PubMedCrossRef
40.
go back to reference Zhong L, Liao D, Li J, Liu W, Wang J, Zeng C, Wang X, Cao Z, Zhang R, Li M, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes. Signal Transduct Target Ther. 2021;6:59.PubMedPubMedCentralCrossRef Zhong L, Liao D, Li J, Liu W, Wang J, Zeng C, Wang X, Cao Z, Zhang R, Li M, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes. Signal Transduct Target Ther. 2021;6:59.PubMedPubMedCentralCrossRef
41.
go back to reference Nuchel J, Ghatak S, Zuk AV, Illerhaus A, Morgelin M, Schonborn K, Blumbach K, Wickstrom SA, Krieg T, Sengle G, et al. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy. 2018;14:465–86.PubMedPubMedCentralCrossRef Nuchel J, Ghatak S, Zuk AV, Illerhaus A, Morgelin M, Schonborn K, Blumbach K, Wickstrom SA, Krieg T, Sengle G, et al. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy. 2018;14:465–86.PubMedPubMedCentralCrossRef
43.
go back to reference Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S. Sánchez-Madrid F: ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S. Sánchez-Madrid F: ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef
44.
go back to reference Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10.PubMedCrossRef Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10.PubMedCrossRef
45.
go back to reference Zhang M, Kenny SJ, Ge L, Xu K, Schekman R. Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion. Elife. 2015;4:e11205.PubMedPubMedCentralCrossRef Zhang M, Kenny SJ, Ge L, Xu K, Schekman R. Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion. Elife. 2015;4:e11205.PubMedPubMedCentralCrossRef
46.
go back to reference Kim SH, Kang JG, Kim CS, Ihm S-H, Choi MG, Yoo HJ, Lee SJ. Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother. 2016;83:22–32.PubMedCrossRef Kim SH, Kang JG, Kim CS, Ihm S-H, Choi MG, Yoo HJ, Lee SJ. Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother. 2016;83:22–32.PubMedCrossRef
47.
go back to reference Huang Y, Song N, Ding Y, Yuan S, Li X, Cai H, Shi H, Luo Y. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res. 2009;69:7529–37.PubMedCrossRef Huang Y, Song N, Ding Y, Yuan S, Li X, Cai H, Shi H, Luo Y. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res. 2009;69:7529–37.PubMedCrossRef
48.
go back to reference Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241:362–74.PubMedCrossRef Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241:362–74.PubMedCrossRef
49.
go back to reference Holash J. Vessel cooption, regression, and growth in tumors mediated by Angiopoietins and VEGF. Science. 1999;284:1994–8.PubMedCrossRef Holash J. Vessel cooption, regression, and growth in tumors mediated by Angiopoietins and VEGF. Science. 1999;284:1994–8.PubMedCrossRef
50.
go back to reference Reymond N, d’Agua BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.PubMedCrossRef Reymond N, d’Agua BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.PubMedCrossRef
51.
go back to reference Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999;9:268–73.PubMedCrossRef Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999;9:268–73.PubMedCrossRef
52.
go back to reference Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE. Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol. 1999;181:319–29.PubMedCrossRef Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE. Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol. 1999;181:319–29.PubMedCrossRef
53.
go back to reference Martin TA, Mansel RE, Jiang WG. Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol. 2002;192:268–75.PubMedCrossRef Martin TA, Mansel RE, Jiang WG. Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol. 2002;192:268–75.PubMedCrossRef
54.
go back to reference Ma W, Han W, Greer PA, Tuder RM, Toque HA, Wang KK, Caldwell RW, Su Y. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. J Clin Invest. 2011;121:4548–66.PubMedPubMedCentralCrossRef Ma W, Han W, Greer PA, Tuder RM, Toque HA, Wang KK, Caldwell RW, Su Y. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. J Clin Invest. 2011;121:4548–66.PubMedPubMedCentralCrossRef
55.
go back to reference Pittet JF, Griffiths MJ, Geiser T, Kaminski N, Dalton SL, Huang X, Brown LA, Gotwals PJ, Koteliansky VE, Matthay MA, Sheppard D. TGF-beta is a critical mediator of acute lung injury. J Clin Invest. 2001;107:1537–44.PubMedPubMedCentralCrossRef Pittet JF, Griffiths MJ, Geiser T, Kaminski N, Dalton SL, Huang X, Brown LA, Gotwals PJ, Koteliansky VE, Matthay MA, Sheppard D. TGF-beta is a critical mediator of acute lung injury. J Clin Invest. 2001;107:1537–44.PubMedPubMedCentralCrossRef
56.
go back to reference Epstein FH, Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.CrossRef Epstein FH, Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.CrossRef
57.
go back to reference Sanchez-Capelo A. Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev. 2005;16:15–34.PubMedCrossRef Sanchez-Capelo A. Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev. 2005;16:15–34.PubMedCrossRef
58.
go back to reference Sánchezcapelo A, Colin P, Guibert B, Biguet NF, Mallet J. Transforming growth factor beta1 overexpression in the nigrostriatal system increases the dopaminergic deficit of MPTP mice. Mol Cell Neurosci. 2003;23:614–25.PubMedCrossRef Sánchezcapelo A, Colin P, Guibert B, Biguet NF, Mallet J. Transforming growth factor beta1 overexpression in the nigrostriatal system increases the dopaminergic deficit of MPTP mice. Mol Cell Neurosci. 2003;23:614–25.PubMedCrossRef
59.
go back to reference Monteleone G, Boirivant M, Pallone F, MacDonald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol. 2008;1(Suppl 1):S50–53.PubMedCrossRef Monteleone G, Boirivant M, Pallone F, MacDonald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol. 2008;1(Suppl 1):S50–53.PubMedCrossRef
60.
go back to reference Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.PubMedCrossRef Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.PubMedCrossRef
61.
go back to reference Wyss-Coray T, Masliah E, Mallory M, Mcconlogue L, Johnson-Wood K, Lin C, Mucke L. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature, 389:603–6. Wyss-Coray T, Masliah E, Mallory M, Mcconlogue L, Johnson-Wood K, Lin C, Mucke L. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature, 389:603–6.
62.
go back to reference Ferreira JV, Soares ADR, Ramalho J, Carvalho CM, Cardoso MH, Pintado P, Carvalho AS, Beck HC, Matthiesen R, Zuzarte M. LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 2022;8:eabm1140.PubMedPubMedCentralCrossRef Ferreira JV, Soares ADR, Ramalho J, Carvalho CM, Cardoso MH, Pintado P, Carvalho AS, Beck HC, Matthiesen R, Zuzarte M. LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 2022;8:eabm1140.PubMedPubMedCentralCrossRef
63.
go back to reference Colombo M, Raposo GA, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef Colombo M, Raposo GA, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef
64.
go back to reference Derynck R, Akhurst RJ, Balmain A. TGF- beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.PubMedCrossRef Derynck R, Akhurst RJ, Balmain A. TGF- beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.PubMedCrossRef
65.
go back to reference Walton KL, Makanji Y, Chen J, Wilce MC, Chan KL, Robertson DM, Harrison CA. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-beta1 complex. J Biol Chem. 2010;285:17029–37.PubMedPubMedCentralCrossRef Walton KL, Makanji Y, Chen J, Wilce MC, Chan KL, Robertson DM, Harrison CA. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-beta1 complex. J Biol Chem. 2010;285:17029–37.PubMedPubMedCentralCrossRef
66.
go back to reference Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister J-J, Hinz B. The single-molecule mechanics of the latent TGF-β1 complex. Curr Biol. 2011;21:2046–54.PubMedCrossRef Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister J-J, Hinz B. The single-molecule mechanics of the latent TGF-β1 complex. Curr Biol. 2011;21:2046–54.PubMedCrossRef
68.
go back to reference Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477.PubMedCrossRef Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477.PubMedCrossRef
69.
go back to reference Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea-Jimenez AL, Lembo F, Fares J, Meeussen S, Kugler S, Roebroek A, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083.PubMedPubMedCentralCrossRef Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea-Jimenez AL, Lembo F, Fares J, Meeussen S, Kugler S, Roebroek A, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083.PubMedPubMedCentralCrossRef
70.
go back to reference Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, Kahyo T, Hatanaka K, Ikegami K, Yoshioka Y, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.PubMedPubMedCentralCrossRef Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, Kahyo T, Hatanaka K, Ikegami K, Yoshioka Y, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.PubMedPubMedCentralCrossRef
71.
go back to reference Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the Tumor Microenvironment. Mol Cell. 2020;78:1192–e12061110.PubMedCrossRef Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the Tumor Microenvironment. Mol Cell. 2020;78:1192–e12061110.PubMedCrossRef
72.
go back to reference Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H et al. Engineering Extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv Mater 2021:e2103471. Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H et al. Engineering Extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv Mater 2021:e2103471.
73.
74.
go back to reference Liang X, Wang X, He Y, Wu Y, Zhong L, Liu W, Liao D, Kang T. Acetylation dependent functions of Rab22a-NeoF1 Fusion protein in Osteosarcoma. Theranostics. 2020;10:7747–57.PubMedPubMedCentralCrossRef Liang X, Wang X, He Y, Wu Y, Zhong L, Liu W, Liao D, Kang T. Acetylation dependent functions of Rab22a-NeoF1 Fusion protein in Osteosarcoma. Theranostics. 2020;10:7747–57.PubMedPubMedCentralCrossRef
Metadata
Title
The incorporation of acetylated LAP-TGF-β1 proteins into exosomes promotes TNBC cell dissemination in lung micro-metastasis
Authors
Pei Yu
Yubao Han
Lulu Meng
Zengying Tang
Zhiwei Jin
Zhenzhen Zhang
Yunjiang Zhou
Jun Luo
Jianguang Luo
Chao Han
Chao Zhang
Lingyi Kong
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Metastasis
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-01995-z

Other articles of this Issue 1/2024

Molecular Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine