Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells

Authors: Imanol Arozarena, Ibai Goicoechea, Oihane Erice, Jennnifer Ferguson, Geoffrey P Margison, Claudia Wellbrock

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents.

Methods

Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors.

Results

Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors.

Conclusion

In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-954.CrossRefPubMed Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-954.CrossRefPubMed
2.
go back to reference Wellbrock C, Hurlstone A: BRAF as therapeutic target in melanoma. Biochem Pharmacol. 2008, 80: 561-567.CrossRef Wellbrock C, Hurlstone A: BRAF as therapeutic target in melanoma. Biochem Pharmacol. 2008, 80: 561-567.CrossRef
3.
go back to reference Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E, Marais R: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 2011, 19: 45-57.CrossRefPubMed Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E, Marais R: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 2011, 19: 45-57.CrossRefPubMed
4.
go back to reference Belden S, Flaherty KT: MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev Mol Med. 2012, 14: e17-CrossRefPubMed Belden S, Flaherty KT: MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev Mol Med. 2012, 14: e17-CrossRefPubMed
5.
go back to reference Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, : Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011, 364: 2507-2516.PubMedCentralCrossRefPubMed Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, : Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011, 364: 2507-2516.PubMedCentralCrossRefPubMed
6.
go back to reference Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012, 367: 1694-1703.PubMedCentralCrossRefPubMed Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012, 367: 1694-1703.PubMedCentralCrossRefPubMed
7.
go back to reference Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012, 366: 707-714.PubMedCentralCrossRefPubMed Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012, 366: 707-714.PubMedCentralCrossRefPubMed
8.
go back to reference Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011, 29: 3085-3096.PubMedCentralCrossRefPubMed Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011, 29: 3085-3096.PubMedCentralCrossRefPubMed
9.
go back to reference Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, Halilovic E, Persaud Y, Xing F, Viale A, Tsai J, Chapman PB, Bollag G, Solit DB, Rosen N: The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A. 2010, 107: 14903-14908.PubMedCentralCrossRefPubMed Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, Halilovic E, Persaud Y, Xing F, Viale A, Tsai J, Chapman PB, Bollag G, Solit DB, Rosen N: The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A. 2010, 107: 14903-14908.PubMedCentralCrossRefPubMed
10.
go back to reference Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006, 439: 358-362.PubMedCentralCrossRefPubMed Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006, 439: 358-362.PubMedCentralCrossRefPubMed
11.
go back to reference Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010, 140: 209-221.PubMedCentralCrossRefPubMed Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010, 140: 209-221.PubMedCentralCrossRefPubMed
12.
go back to reference Mouawad R, Sebert M, Michels J, Bloch J, Spano JP, Khayat D: Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol. 2010, 74: 27-39.CrossRefPubMed Mouawad R, Sebert M, Michels J, Bloch J, Spano JP, Khayat D: Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol. 2010, 74: 27-39.CrossRefPubMed
13.
go back to reference Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L: Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res. 2007, 56: 275-287.CrossRefPubMed Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L: Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res. 2007, 56: 275-287.CrossRefPubMed
14.
go back to reference Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, Dreno B, Henz M, Schadendorf D, Kapp A, Weiss J, Fraass U, Statkevich P, Muller M, Thatcher N: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000, 18: 158-166.PubMed Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, Dreno B, Henz M, Schadendorf D, Kapp A, Weiss J, Fraass U, Statkevich P, Muller M, Thatcher N: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000, 18: 158-166.PubMed
15.
go back to reference Friedman HS, Kerby T, Calvert H: Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000, 6: 2585-2597.PubMed Friedman HS, Kerby T, Calvert H: Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000, 6: 2585-2597.PubMed
16.
go back to reference Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012, 380: 358-365.CrossRefPubMed Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012, 380: 358-365.CrossRefPubMed
17.
go back to reference Meckbach D, Keim U, Richter S, Leiter U, Eigentler TK, Bauer J, Pflugfelder A, Buttner P, Garbe C, Weide B: BRAF-V600 mutations have no prognostic impact in stage IV melanoma patients treated with monochemotherapy. PLoS One. 2014, 9: e89218-PubMedCentralCrossRefPubMed Meckbach D, Keim U, Richter S, Leiter U, Eigentler TK, Bauer J, Pflugfelder A, Buttner P, Garbe C, Weide B: BRAF-V600 mutations have no prognostic impact in stage IV melanoma patients treated with monochemotherapy. PLoS One. 2014, 9: e89218-PubMedCentralCrossRefPubMed
18.
go back to reference Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009, 22: 740-749.PubMedCentralCrossRefPubMed Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009, 22: 740-749.PubMedCentralCrossRefPubMed
19.
go back to reference Rockmann H, Schadendorf D: Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Onkologie. 2003, 26: 581-587.CrossRefPubMed Rockmann H, Schadendorf D: Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Onkologie. 2003, 26: 581-587.CrossRefPubMed
20.
go back to reference Sarasin A, Dessen P: DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med. 2010, 10: 413-418.CrossRefPubMed Sarasin A, Dessen P: DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med. 2010, 10: 413-418.CrossRefPubMed
21.
go back to reference Verbeek B, Southgate TD, Gilham DE, Margison GP: O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull. 2008, 85: 17-33.CrossRefPubMed Verbeek B, Southgate TD, Gilham DE, Margison GP: O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull. 2008, 85: 17-33.CrossRefPubMed
22.
go back to reference Bennett LL, Smithers D, Rose LM, Adamson DJ, Shaddix SC, Thomas HJ: Metabolism and metabolic effects of 2-azahypoxanthine and 2-azaadenosine. Biochem Pharmacol. 1985, 34: 1293-1304.CrossRefPubMed Bennett LL, Smithers D, Rose LM, Adamson DJ, Shaddix SC, Thomas HJ: Metabolism and metabolic effects of 2-azahypoxanthine and 2-azaadenosine. Biochem Pharmacol. 1985, 34: 1293-1304.CrossRefPubMed
23.
go back to reference Szybalski W: Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. Bioessays. 1992, 14: 495-500.CrossRefPubMed Szybalski W: Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. Bioessays. 1992, 14: 495-500.CrossRefPubMed
24.
go back to reference Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005, 11: 7234-7242.CrossRefPubMed Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005, 11: 7234-7242.CrossRefPubMed
25.
go back to reference Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012, 483: 570-575.PubMedCentralCrossRefPubMed Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012, 483: 570-575.PubMedCentralCrossRefPubMed
26.
go back to reference Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006, 19: 290-302.CrossRefPubMed Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006, 19: 290-302.CrossRefPubMed
27.
go back to reference Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M: Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant. 1999, 14: 58-63.CrossRefPubMed Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M: Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant. 1999, 14: 58-63.CrossRefPubMed
28.
go back to reference Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M: Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther. 2003, 2: 753-763.PubMed Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M: Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther. 2003, 2: 753-763.PubMed
29.
go back to reference Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H: The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013, 8: e76550-PubMedCentralCrossRefPubMed Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H: The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013, 8: e76550-PubMedCentralCrossRefPubMed
30.
go back to reference Metelmann HR, Von Hoff DD: In vitro activation of dacarbazine (DTIC) for a human tumor cloning system. Int J Cell Cloning. 1983, 1: 24-32.CrossRefPubMed Metelmann HR, Von Hoff DD: In vitro activation of dacarbazine (DTIC) for a human tumor cloning system. Int J Cell Cloning. 1983, 1: 24-32.CrossRefPubMed
31.
go back to reference Shibuya H, Kato Y, Saito M, Isobe T, Tsuboi R, Koga M, Toyota H, Mizuguchi J: Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res. 2003, 13: 457-464.CrossRefPubMed Shibuya H, Kato Y, Saito M, Isobe T, Tsuboi R, Koga M, Toyota H, Mizuguchi J: Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res. 2003, 13: 457-464.CrossRefPubMed
32.
go back to reference Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, McGary EC, Ananthaswamy HN, Price JE, Bar-Eli M: Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol. 2004, 22: 2092-2100.CrossRefPubMed Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, McGary EC, Ananthaswamy HN, Price JE, Bar-Eli M: Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol. 2004, 22: 2092-2100.CrossRefPubMed
33.
go back to reference Fiore D, Jackson AJ, Didolkar MS, Dandu VR: Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob Agents Chemother. 1985, 27: 977-979.PubMedCentralCrossRefPubMed Fiore D, Jackson AJ, Didolkar MS, Dandu VR: Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob Agents Chemother. 1985, 27: 977-979.PubMedCentralCrossRefPubMed
34.
go back to reference Parsons PG, Smellie SG, Morrison LE, Hayward IP: Properties of human melanoma cells resistant to 5-(3′, 3′-dimethyl-1-triazeno)imidazole-4-carboxamide and other methylating agents. Cancer Res. 1982, 42: 1454-1461.PubMed Parsons PG, Smellie SG, Morrison LE, Hayward IP: Properties of human melanoma cells resistant to 5-(3′, 3′-dimethyl-1-triazeno)imidazole-4-carboxamide and other methylating agents. Cancer Res. 1982, 42: 1454-1461.PubMed
35.
go back to reference Saunders PP, DeChang W, Chao LY: Mechanisms of 5-(3, 3-dimethyl-1-triazeno)imidazole-4-carboxamide (Dacarbazine) cytotoxicity toward Chinese hamster ovary cells in vitro are dictated by incubation conditions. Chem Biol Interact. 1986, 58 (3): 319-331.CrossRefPubMed Saunders PP, DeChang W, Chao LY: Mechanisms of 5-(3, 3-dimethyl-1-triazeno)imidazole-4-carboxamide (Dacarbazine) cytotoxicity toward Chinese hamster ovary cells in vitro are dictated by incubation conditions. Chem Biol Interact. 1986, 58 (3): 319-331.CrossRefPubMed
36.
go back to reference Fellenberg J, Kunz P, Sahr H, Depeweg D: Overexpression of inosine 5′-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells. PLoS One. 2010, 5: e12179-PubMedCentralCrossRefPubMed Fellenberg J, Kunz P, Sahr H, Depeweg D: Overexpression of inosine 5′-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells. PLoS One. 2010, 5: e12179-PubMedCentralCrossRefPubMed
37.
go back to reference Penuelas S, Noe V, Ciudad CJ: Modulation of IMPDH2, survivin, topoisomerase I and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells. Febs J. 2005, 272: 696-710.CrossRefPubMed Penuelas S, Noe V, Ciudad CJ: Modulation of IMPDH2, survivin, topoisomerase I and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells. Febs J. 2005, 272: 696-710.CrossRefPubMed
38.
go back to reference Penuelas S, Noe V, Morales R, Ciudad CJ: Sensitization of human erythroleukemia K562 cells resistant to methotrexate by inhibiting IMPDH. Med Sci Monit. 2005, 11: BR6-BR12.PubMed Penuelas S, Noe V, Morales R, Ciudad CJ: Sensitization of human erythroleukemia K562 cells resistant to methotrexate by inhibiting IMPDH. Med Sci Monit. 2005, 11: BR6-BR12.PubMed
39.
go back to reference Aufderklamm S, Todenhofer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C: Thymidine kinase and cancer monitoring. Cancer Lett. 2012, 316: 6-10.CrossRefPubMed Aufderklamm S, Todenhofer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C: Thymidine kinase and cancer monitoring. Cancer Lett. 2012, 316: 6-10.CrossRefPubMed
40.
go back to reference Verma S, Quirt IC, Eisenhauer EA, Iscoe NA, Young VJ, Bodurtha AJ, Davidson J: A phase II study of weekly edatrexate (10-EDAM) in metastatic melanoma: a national cancer institute of Canada clinical trials group study. Ann Oncol. 1993, 4: 254-255.PubMed Verma S, Quirt IC, Eisenhauer EA, Iscoe NA, Young VJ, Bodurtha AJ, Davidson J: A phase II study of weekly edatrexate (10-EDAM) in metastatic melanoma: a national cancer institute of Canada clinical trials group study. Ann Oncol. 1993, 4: 254-255.PubMed
41.
go back to reference Leahy MF, Silver HK, Klimo P, Hall TC: Treatment of advanced malignant melanoma with high dose methotrexate and folinic acid rescue. Med Pediatr Oncol. 1982, 10: 151-156.CrossRefPubMed Leahy MF, Silver HK, Klimo P, Hall TC: Treatment of advanced malignant melanoma with high dose methotrexate and folinic acid rescue. Med Pediatr Oncol. 1982, 10: 151-156.CrossRefPubMed
42.
go back to reference Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD, Hearing VJ, Gottesman MM: Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci U S A. 2006, 103: 9903-9907.PubMedCentralCrossRefPubMed Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD, Hearing VJ, Gottesman MM: Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci U S A. 2006, 103: 9903-9907.PubMedCentralCrossRefPubMed
43.
go back to reference Saez-Ayala M, Fernandez-Perez MP, Montenegro MF, Sanchez-del-Campo L, Chazarra S, Pinero-Madrona A, Cabezas-Herrera J, Rodriguez-Lopez JN: Melanoma coordinates general and cell-specific mechanisms to promote methotrexate resistance. Exp Cell Res. 2012, 318: 1146-1159.CrossRefPubMed Saez-Ayala M, Fernandez-Perez MP, Montenegro MF, Sanchez-del-Campo L, Chazarra S, Pinero-Madrona A, Cabezas-Herrera J, Rodriguez-Lopez JN: Melanoma coordinates general and cell-specific mechanisms to promote methotrexate resistance. Exp Cell Res. 2012, 318: 1146-1159.CrossRefPubMed
44.
go back to reference Sanchez-del-Campo L, Montenegro MF, Cabezas-Herrera J, Rodriguez-Lopez JN: The critical role of alpha-folate receptor in the resistance of melanoma to methotrexate. Pigment Cell Melanoma Res. 2009, 22: 588-600.CrossRefPubMed Sanchez-del-Campo L, Montenegro MF, Cabezas-Herrera J, Rodriguez-Lopez JN: The critical role of alpha-folate receptor in the resistance of melanoma to methotrexate. Pigment Cell Melanoma Res. 2009, 22: 588-600.CrossRefPubMed
45.
go back to reference Saez-Ayala M, Montenegro MF, Sanchez-Del-Campo L, Fernandez-Perez MP, Chazarra S, Freter R, Middleton M, Pinero-Madrona A, Cabezas-Herrera J, Goding CR, Rodriguez-Lopez JN: Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell. 2013, 24: 105-119.CrossRefPubMed Saez-Ayala M, Montenegro MF, Sanchez-Del-Campo L, Fernandez-Perez MP, Chazarra S, Freter R, Middleton M, Pinero-Madrona A, Cabezas-Herrera J, Goding CR, Rodriguez-Lopez JN: Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell. 2013, 24: 105-119.CrossRefPubMed
46.
go back to reference Robien K, Boynton A, Ulrich CM: Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics. 2005, 6: 673-689.CrossRefPubMed Robien K, Boynton A, Ulrich CM: Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics. 2005, 6: 673-689.CrossRefPubMed
47.
go back to reference Watson AJ, Margison GP: O (6)-alkylguanine-DNA alkyltransferase assay. Methods Mol Med. 1999, 28: 167-178.PubMed Watson AJ, Margison GP: O (6)-alkylguanine-DNA alkyltransferase assay. Methods Mol Med. 1999, 28: 167-178.PubMed
48.
go back to reference Gerson SL, Trey JE, Miller K, Berger NA: Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis. 1986, 7: 745-749.CrossRefPubMed Gerson SL, Trey JE, Miller K, Berger NA: Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis. 1986, 7: 745-749.CrossRefPubMed
49.
go back to reference Watson AJ, Margison GP: O6-alkylguanine-DNA alkyltransferase assay. Methods Mol Biol. 2000, 152: 49-61.PubMed Watson AJ, Margison GP: O6-alkylguanine-DNA alkyltransferase assay. Methods Mol Biol. 2000, 152: 49-61.PubMed
50.
go back to reference Elder RH, Margison GP, Rafferty JA: Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem J. 1994, 298 (Pt 1): 231-235.PubMedCentralCrossRefPubMed Elder RH, Margison GP, Rafferty JA: Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem J. 1994, 298 (Pt 1): 231-235.PubMedCentralCrossRefPubMed
Metadata
Title
Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells
Authors
Imanol Arozarena
Ibai Goicoechea
Oihane Erice
Jennnifer Ferguson
Geoffrey P Margison
Claudia Wellbrock
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-154

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine